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Abstract. Cloud detection is a preliminary step in most earth observation procedures employing 

remotely sensed data. Fire, sea and urban areas satellite monitoring, for instance, can be strongly 

impaired if the effects of clouds are not properly taken into account, e.g. by constructing an accu-

rate cloud mask. In this paper we exploit the Markov Random Field (MRF) to draw a computa-

tionally light cloud detection algorithm. MRF is a consolidated statistical methodology to model 

spatial correlation among neighboring pixels in an image. Some extensions such as Extended Mar-

kov Random Fields (EMRF) take into account temporal correlation between subsequent images, 

by means of an homogeneous energy term in the Gibbs distribution along the estimated motion di-

rection. Here we introduce a novel approach, in which the prior energy includes a non-

homogeneous term depending on the relative position, specifically the connection level, of the 

cloud pixels detected in the previous image. In this way, we better match the cloud dynamics, in 

terms of both position and shape. A comparative performance evaluation on simulated cloudy im-

ages is carried on, showing that the said method outperforms standard MRF and EMRF based al-

gorithms. A first analysis on real images of Sardinia island from SEVIRI sensor is in keeping with 

the above result. 

Keywords. Cloud Detection, Cloud tracking, Maximum A posteriori Probability (MAP), Markov 

Random Field (MRF), SEVIRI  

1. Introduction 

Cloud detection is a very important issue in extracting information of geophysical, geomorphologic 

and meteorological interest from remotely sensed images.  

According to the particular application, clouds act for an unsolicited corruption of the available 

data or, rather, as a source of information to infer relevant properties of the atmosphere [2]. Sea and 

urban areas satellite monitoring, for instance, is strongly impaired if the presence of clouds is not 

properly taken into account. Algorithms for fire detection experience a double negative effect from 

the presence of cloudy pixels: the latter can be easily misclassified as fire pixels due to the in-

creased brightness temperature, as well as clouds can hide an effectively burning zone [3]. Precise 

sea surface temperature estimates can be achieved by sensors operating at Thermal InfraRed (TIR) 

frequencies only after assuring a proper preliminary cloud screening phase [4]. Oppositely, accurate 

evaluation of positions and movements of the clouds masses is the basis for climate and meteoro-

logical applications, ranging from wind fields and hurricane tracking to data assimilation and nu-

merical weather prediction [5]. Therefore the production of a cloud mask represents a needed pre-

liminary step for their correct working [2]. 

The cloudy/non-cloudy classification of pixels can be performed by several approaches. Due to 

their simplicity, pixel-wise approaches have been largely explored in the past by means of both su-

pervised and unsupervised techniques. The former relies on a preliminary feature space selection 

performed by an expert. The subsequent class association step can be carried out, through Discrimi-

nant Analysis (DA) as in [6], Probabilistic Neural Networks (PNN) [8], or Support Vector Ma-

chines (SVM) [9]. Unsupervised procedures, either parametric, based on the estimation of the cha-
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racterizing distribution quantities [11] or non-parametric [2] have been used. Since unsupervised 

classification cannot take advantage of a guided setup, it's prone to produce inaccurate results. On 

the other side, supervised approaches can suffer from inadequacy of the training set as shown in 

[10]. 

A significant progress in the design of a cloud classification algorithm, can be obtained by tak-

ing into account the correlation of the label of a generic pixel with those of its neighbors. Among 

these approaches, one of the most powerful relies on the application of the Markov Random Fields 

(MRF) theory that provides a convenient and consistent way of modeling context-dependent entities, 

such as image pixels values [1]. For these reasons and, crucially, for computational affordability, 

MRFs have been widely employed to solve vision problems at all levels. 

While pixels inside the cloud body are typically well classified, those close to the border are of-

ten misclassified due to lower contrast of cloud edges against the land or sea background [12]. 

However, an additional discriminating feature of a cloud edge respect to the static background con-

sists possibly in its motion. This concept calls for exploiting temporal information in addition to 

purely spatial information as in classical approaches [13], [14]. 

In [15] we introduce an a-priori term stemming for the predicted cloud pixel positions and show 

performance improvements with respect to classical spatial MRF and spatio/temporal EMRF (Ex-

tended MRF) [18], Bayesian classification. This prior term is computed by approximating cloud 

volumes by circumscribing rectangles. 

This simple approach turns out to lack in describing extended and rugged clouds, eventually re-

sulting in misclassification rate worsen. In this paper we present a level of connection based a-priori 

to overcome this problem and we show, in Section 3, how this new technique improves the perfor-

mances obtained in [15]. To this aim we employed a simple cloud simulator to get a set of ground 

truths for  heterogeneous situations. Finally, results in keeping with simulated test are provided for 

real SEVIRI images. 

 

2. Methods 

In this section, cloud classification using Maximum A posteriori Probability-Markov Random Field 

(MAP-MRF) framework is presented [1]. 

This probabilistic approach is based on the hypothesis that the labels of each pixel (also named 

site) i   S of an image (where S is the pixel index set), assuming values in L = {0,1} = {non-cloud, 

cloud}, constitutes a MRF F. 

The estimate f̂  of the actual label realization F = f  is achieved by means of the MAP rule,  

] )p()p( [argmax   ] )p( [ argmaxˆ
f

fd|f f| df
f

  

 

where p(d | f) is the data likelihood and p(f) is the a priori probability of the classified image. 

One of the main theoretical results in MRF theory is the equivalence with a Gibbs Random 

Field (GRF) (or Hammersley-Clifford theorem) [1], that let us to express the joint probability of a 

MRF as: 

 ] )(
1

 exp[)( fU
T

fpT   (1) 

 

where T is a constant called the temperature, which shall be assumed to be 1 unless otherwise stated, 

and U(f) is the energy function. 
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A common choice is a likelihood of the kind 

 

] )|( exp[)|( fdUfdp   

 

that allows to write, together with (1), the posterior probability as 
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Applying the MAP estimator to the posterior probability, we have: 
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In general, the minimization of a non-convex function has no closed solution. Thanks to the 

Markov property, that limit the interaction between neighbor labels up to a limited area surrounding 

each pixel, this task can be afforded by very efficient algorithms, such as the Simulated Annealing 

[1]. 

The most used neighboring model relies upon the (2DI) Ising model that contains terms describ-

ing interactions among up to two sites. For this model, U(f) can be written as 
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where fi and fj are the labels of pixel i and j respectively, Ni is the spatial neighborhood of the pixel i 

that, in the Ising model adopted here, includes only vertical and horizontal pixels respect to the site i 

and βs is defined as the spatial interaction coefficient.  

For the data likelihood, we assume a factorized Laplace distribution although other factorized 

distributions are allowed: 
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where μ1 and μ0 are the (estimated) centroids of the two classes and the factorized form is allowed 

by the conditional independence hypothesis of the pixel values given the assigned label. 

The aim of the paper is to investigate the possibility of improving the spatio-temporal approach 

proposed in [15] where a generalization of the Ising model (2) is presented to take into account the 

temporal dependencies among pixels. We propose here a different way to include the a-priori in-

formation deriving from the cloud motion tracking. 

In the cited approach, since the cloudy pixels compose blob-like regions, we compute, in a giv-

en image at time k - 1, the rectangular boxes (or bounding boxes) containing all the 8-connected 

pixels labeled as cloud and track their evolution. In particular, after estimating the cross covariance 

coefficients [17] between image at time k - 1 and that at time k, we are able to associate at each 

bounding box (and consequently at each pixel therein contained) a motion vector, as shown in Fig.1. 

This allows to define, for each pixel, its time-neighborhood.  So in the following we propose to use 

different algorithms: 

 the 3D-Ising-like algorithm (3DI) already presented in [18]; 

 the 3D-Penalized algorithm (3DP) [15]. 
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These algorithms consist in simply generalizing the energy function (2) by adding a time neigh-

bor dependent term. In order to compute them, the first step consists in calculating a prediction of 

the cloud positions at the frame  k + 1, given the classification at the frame k. This is a classical 

multi-target tracking problem. We use a MCC method based on the  Normalized Cross Covariance 

Coefficient (NCCCoef) [17]. 

 

 
Figure 1: An example of cloud motion estimation with the algorithm proposed in this section. Red arrows represent di-

rections of motion of the cloud objects. 

3.1 3D-Penalized algorithm (3DP) 

The approach proposed in [15], called 3DP (3D-Penalized), relies in defining the first order poten-

tial V1( fi ) as: 
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where βt is called temporal interaction coefficient and λ(i) is the penalty function. The latter was 

defined as unitary at the center of the bounding boxes representing the predicted clouds’ positions 

and as linearly decreasing with the distance from center. An instance of such density function is 

shown in Fig. 2. 
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Figure 2: An example of penalty term based on bounding boxes. 

 

In the presence of big and merging clouds a detailed expression for the function λ can be more 

useful. For that reason, we define a pixel to be "8-connected" if it is labeled as cloud, as well as all 

the pixels belonging to its 8-neighborhood. The latter is composed by the adjacent pixels in vertical, 

horizontal and diagonal directions. Moreover a pixel is said to be "N-times 8-connected" if it is 8-

connected and all its neighbors are "(N-1)-times 8-connected". The "level of connection Li" is de-

fined as the maximum N such that pixel i is "N times 8-connected". Mathematically, we have: 
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Finally, the proposed density function is described by the expressions: 
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In this expression Δ is a coefficient that allows to expand the cloud range, α is a decay exponent and 

λE is the density of a cloud pixel on the cloud edges. An instance of such density function is shown 

in Fig. 3. 

 

 
Figure 3: An example of penalty term as in (3). 

3. Results 

In this section, a performance comparison of the algorithms presented above (resumed in Table 1) 

is carried out under various instances. Firstly, we report the results relative to data simulated by 

means of a simple cloud behavior emulator. This step was performed in order to obtain a reliable 

ground truth. Subsequently we show the results achieved on SEVIRI images, classified by "naked-

eye". 

 

Table 1. Glossary 

Abbreviation Name 

3DI 3D-Ising-like (also named Extended Markov Random Field in [18]) 

2DI 2D Ising 

3DP-BB 3D-Penalized – bounding box 

3DP-LC 3D-Penalized – levels of connection 

 

 

4.1 Simulated analysis 

 

In order to carry out a preliminary analysis of the results obtained by the presented algorithms with 

several environment conditions, we developed a simulator of cloud-like blobs that is able to account 

for a small set of cloud peculiar features, as for example motion, deformation, etc. In particular, the 

simulator produces an image sequence in which the birth, evolution and death process of a set of 

blobs is superimposed to a remotely sensed image. During their lifetime the cloud-like shapes are 

rotated, translated, dilated and eroded by means of geometrical and morphological operators. Final-
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ly, in order to achieve more realistic error estimation, the images resulting from geometric manipu-

lations were degraded with additive Gaussian noise and salt and pepper noise.  

A set of 21 tests have been performed. In Fig. 4 the detailed results for each test case are presented 

in terms of the average misclassification rate, while in Table 2 the average results are shown. 

 

 
Figure 4: Detailed misclassification rate of the 4 algorithms in the 21 test cases. 

 

Table 2. Misclassification rate of the 4 algorithms averaged on the whole test set.. 

 Pe 

3DI 0.038 

2DI 0.018 

3DP-BB 0.012 

3DP-LC 0.006 

 

In Fig. 4, we can see that the 3DI algorithm achieves performances comparable to the 2DI algorithm 

only when the effects of cloud deformations are less important than translations (test #21). The 

3DP-BB algorithm, on the other hand, always yields better performance compared in respect to the 

3DI and 2DI algorithms. The advantage is more evident when morphological operators affect se-

riously the cloud shape (test #14, #15 and #20) and  the number of clouds is very high (test #17). In 

contrast, poorer performances are achieved with very high noise (test #2), significant rotations (test 

#5) and high cloud birth rate (test #8).  

On the other hand, the 3DP-LC always obtains the overall best performances exclusive of test 

case #14 where high deformations renders the cloud pixels’ estimation hardly predictable by a li-

near translation. On the contrary, best results are obtained in the test #21 thanks to the absence of 

deformations. In summary, the map proposed in this contribution gives poor results when there are 

big errors in the motion estimation phase and/or very high deformations in targets are present. 

In any case, simulations confirm that one of the main objectives of the method, i.e., the limited 

increase of computational effort, is attained by both 3DP algorithms, being the processing time not 

longer than 1.25 times that of 2DI. However, it’s worthy to note that 3DP-BB algorithm processing 

time  doesn’t depend on cloud dimensions, while 3DP-LC computation times increases with the 

cloud extension. 

 

4.2 Real SEVIRI images results 

 

Real data tests have been performed on images acquired by the SEVIRI sensor, in the band VIS 0.8. 

In this case, no effective ground truth is available for comparing the cloud classification algorithm 
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performances. To furnish a quantitative measure of the performances, we used a simple MATLAB 

routine to select by ”naked-eye” the cloud regions and achieve the needed ground truth on real data 

images of Sardinia island. 

In Fig. 5, we can see that the minimum tof the error probability versus the βt parameter is found 

slightly below µ1 − µ0 (about 100). Moreover, we can note that in this area the algorithm with the 

new connection based map (3DP-LC) achieve better results, as expected from the simulative setup. 

In Figs. 6-8 we report a robustness analysis of the 3DP-LC algorithm that has been performed 

by evaluating misclassification rate in function of each single parameter of the LC-map. Noticeable 

variations of the misclassification rate are observed only with the parameter λE , that entails signifi-

cant increase of the false alarms when its value is greater than 0.65. 

Figs. 9 and 10, permit to compare the classification obtained with the four algorithms presented. 

In particular, in Fig. 9, the 3DP-BB algorithm is put side by side with the algorithms present in the 

literature, while, in Fig. 10, we compare the 3DP methods differing for the penalty map to underline 

differences in the classification phase. We report there the label differences of the cited algorithms, 

defined as pixel detected by the first algorithm and not by the second. Visual analysis of Fig. 9 un-

derlines the significant enhancement of the detection capabilities of the proposed algorithm. Fur-

thermore Fig. 10 shows that the improvements achieved by exploiting the level of connection map 

is mainly due to the increased accuracy on the ruggest parts of the cloud masses.       

With regard to the computation load comparison between the 3DP-BB and the 3DP-LC algo-

rithms, it is useful to report how the difference is very limited in this case because no wide clouds 

are in the scene. 

 

Figure 5: Misclassification rate plotted against the βt parameter. 
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Figure 6: Misclassification rate as a function of  the Δ parameter.  

 
Figure 7: Misclassification rate as a function of the α parameter.. 

 
Figure 8:  Misclassification rate as a function of  the λE parameter. 

.. 
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Figure 9: Classification differences among the 3DP-BB, 2DI and 3DI algorithms: in magenta the label differences bet-

weeny 3DP-BB  and  3DI, in cyan the differences between 3DP-BB and  2DI, in red the differences between 3DP-BB 

and both 2DI and 3DI, in blue the differences between 2DI and 3DP-BB and in green the differences between 3DI and 

3DP-BB. 

 

 

 
Figure 10: Classification differences between the 3DP-BB and 3DP-LC algorithms: in cyan the difference between 

3DP-LC and 3DP-BB and in blue the difference between 3DP-LC and 3DP-BB. Moreover, the false alarms of the 3DP-

BB and 3DP-LC algorithms have been highlighted with red and yellow circles respectively. 

 

4. Conclusions 

In this paper we study a cloud detection algorithm based on the MAP-MRF framework. With the 

aim of improving the performances of the Bayesian estimator we use an approach that takes into 
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account the cloud positions in the previous image, as well as their motion between images. The 

Gibbs distribution form of the posterior density is preserved through a simple modification of the 

corresponding energy. We introduced a penalty term that strongly depends on the cloud masses 

shape, thus permitting to fully exploit the possibilities offered by this spatio-temporal approach.  

The method imply an increase of the computational effort respect to the classical spatial MRF me-

thods, but this drawback turns out to be significant only in the presence of huge cloud masses.  

Acknowledgements 

The authors would like to thank Dr. P.G. Marchetti and the Service Support and Ground Segment 

Technology Section at ESA-ESRIN, Frascati (Italy) for many helpful discussions and for providing 

the SEVIRI data. 

References 

[1] Li S., 2009. Markov Random Field Modeling in Image Analysis, (3rdEd. Springer). 

[2] Gòmez-Chova L., Camps-Valls G., Calpe-Maravilla J., Guanter L. & Moreno, J. Cloud-screening algorithm for 

envisat/meris multispectral images. IEEE Trans. Geosci. Remote Sens. 45(12), 4105–4118 (Dec. 2007) 

[3] Cadau E. & Laneve G. Improved msg-seviri images cloud masking and evaluation of its impact on the fire detec-

tion methods. Proc. of IEEE Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp. 1056–1059 (2008) 

[4] Merchant C., Harris A.R., Maturi E. & Maccallum S. Probabilistic physically based cloud screening of satellite 

infrared imagery for operational sea surface temperature retrieval. Q. J. R. Meteorol. Soc. 131(611), 2735–2755 

(Oct 2005) 

[5] Rohn M., Kelly G.A. & Saunders R. Impact of new cloud motion wind products from meteosat on nwp analyses 

and forecasts. Mon. Weather Rev., 129(9), 2392–2403 (Sep 2002) 

[6] Amato U., Antoniadis A., Cuomo V., Cutillo L., Franzese M., Murino L. & Serio C. Statistical cloud detection 

from seviri multispectral images. Remote Sens. Environ. 112(3), 750–766 (Mar 2008) 

[7] Andrews R. Early investigations in optical flow  from colour images. Ph.D. thesis, Queensland University (2003) 

[8] Lee Y.,Wahba G. & Ackerman, S. Cloud classification of satellite radiance data by multi category support vector 

machines. J. Atmos. Oceanic Technol. 21, 159–169 (Feb 2004). 

[9] Tian B., Shaikh M., Azimi-Sadjadi M., Haar T. & Reinke D. A study of cloud classification with neural networks 

using spectral and textural features. IEEE Trans. Neural Netw. 10(1), 138–151 (Jan 1999). 

[10] Gòmez-Chova L., Camps-Valls G., Bruzzone L. & Calpe-Maravilla J. Map kernel methods for semi-supervised 

cloud classification. IEEE Trans.Geosci. Remote Sens. 48(1), 207–220 (Jan 2010). 

[11] Schowengerdt R. Remote Sensing: Models and Methods for Image Processing. 3rd Ed. Elsevier (2007). 

[12] Ackerman S., Strabala K., Menzel W., Frey R., Moeller C. & Gumley L. Discriminating clear sky from clouds with 

modis. J. Geophys. Res. 103(D24), 32141–32157 (Dec 1998). 

[13] Mukherjee D. & Acton S. Cloud tracking by scale space classification. IEEETrans. Geosci. and Remote Sens. 

40(2), 405–415 (Feb 2002). 

[14] Papin C., Bouthemy P. & Rochard G. Unsupervised segmentation of low clouds from infrared meteosat images 

based on a contextual spatio-temporal labeling approach. IEEETrans. Geosci. Remote Sens. 40(1), 104–114 (Jan 

1993). 

[15] Addesso, P., Conte, R., Longo,M., Restaino,R. & Vivone,G. A computationally efficient method for sequential 

map-mrf cloud detection, Proc. ICCSA 2011, Part II, LNCS 6783, pp. 354–365 (2011) in print. 

[16] Lempitsky V., Kohli P., Rother C. & Sharp, T. Image segmentation with a bounding box prior. 12th IEEE Interna-

tional Conference on Computer Vision. pp. 277–284 (2009). 

[17] Marcello J., Eugenio F. & Marques, F. Cloud motion estimation in seviri image sequences. Proc. of IEEE Geos-

cience and Remote Sensing Symposium (IGARSS). vol. 3, pp. 642–645 (2009). 

[18] Stolkin R., Hodgetts M., Greig A. & Gilby, J. Extended markov random fields for predictive image segmentation. 

WSPC - Proceedings (2006). 


