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ABSTRACT

Identification of oil types from laser fluorosensor
measurements necessitates a systematic investigation of
the fluoresence behaviour of a representative number of
different oils. Based on laboratory measurements on 52 oil
samples, a catalogue of optical signatures was assembled.
From these data the fluorescence signatures of characteris-
tic oil types are evaluated.

The analysis of these spectra has shown that approxi-
mately 99% of the spectral information can be represented
by only four abstract eigenfunctions. Oil classification
based on these four eigenfunctions leads to a considerable
reduction of spectral data involved in the identification
process. Moreover, they allow an optimization of the
design of laser fluorosensors with respect to a minimum
number of spectral detection channels, necessary for
gathering significant information.

From computer simulations a method has been derived
which allows for the identification of the fluorescence
signature of the pure oil also in cases of optically thin
films, where the measured spectra are obscured by con-
tributions from the water column.

INTRODUCTION

Lidar fluorosensing applied from low flying aircraft over
the ocean allows the determination of various oceano-
graphic and environmental parameters. Particularly, laser
induced fluorescence signals originating from oil on the
water surface contain a high level of substance specific
information. In principle, this allows the classification of
the spilled oil and an evaluation of the film thickness in
the range of approximately 0.1 to 5 um, depending on the
oil type. The advantage and capability of this technique
has been demonstrated in various experiments and has
widely been reported (O’Neil et al., 1980; Hoge et al.,
1983; Diebel et al., 1985a,b; Diebel et al., 1987 a,b).

As aresult, the airborne laser fluorosensing technique has
been found to be capable of filling a gap in the range of
airborne instrumentation available for marine oil spill
monitoring. Particularly its potential of a substance
specific classification, and its sensitivity in a thickness
range of few micron, makes it a very compromising tech-
nique within surveillance programmes according to inter-
national regulations as, for example, the Marpol
Agreement (Hengstermann and Reuter, 1990).

To allow full usage of these capabilities, laboratory ana-
lyses and theoretical investigations have been carried out.
The result of these investigations will be implemented into
the laser fluorosensor which is currently under develop-
ment (Hengstermann et al., 1991). The presentation of
these results is the aim of this paper.

1. FLUORESCENCE PROPERTIES OF
MINERAL OIL

The spectral variability of fluorescence signatures of oils is
substantially based on the statistical distribution of a com-
plex mixture of numerous organic compounds. The distribu-
tion of these compounds is widely determined by the
genesis, depth and geological position of the deposit.
However the common nomenclature of oils, which is mainly
based on empirical, macroscopic properties as, for example,
the gravity, the viscosity or the spreading behaviour, does
not consider any fluorometric characteristics.

Hence, it is not possible to predict a certain spectral
signature or feature from the nomenclature. It is therefore
necessary to investigate the optical properties of a repre-
sentative number of different oil types in the laboratory,
and to get an overview of the spectral variability of the
fluorescence signatures.

In practice, it is impossible to investigate the optical
properties of all different oils transported at sea. This has
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to be done with a number of representative oils, whereby
the term ‘representative’ does not necessarily has a global
meaning. In most cases local or operational aspects should
also be taken into consideration.

Due to this fact, it is not the primary goal of the classifi-
cation to identify the name of the spilled oil. Instead, an
accurate estimation of the spilled volume and an assess-
ment of its ecological risk shall be obtained from fluores-
cence measurements.

Based on these investigations a division of the oils into
different classes with a common spectral signature has to
be performed, whereby other physical and chemical prop-
erties are of secondary relevance.

The results reported in the following are based on
fluorescence spectra of 52 different crude oils and re-
fined products. The spectra were taken with a commer-
cially available Perkin Elmer 650-40 fluorometer
equipped with an front-surface-assembly. They are cor-
rected for the spectral characteristic of the excitation
source and the spectral sensitivity of the detection sys-
tem. A fluorescence standard of quinine sulfate has been
used to eliminate long term instabilities of the detector
system.

Fig. 1 shows as an example the fluorescence spectra of a
crude oil, a diesel, and a vegetable oil. To allow for an easy
comparison of the shape of these spectra, they have been
normalized to unit fluorescence efficiency.
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Fig. I - Fluorescence spectra of an Agrill crude oil and diesel oll,
and of a vegetable oil and a fish oil as examples of a class of
harmless oils. To allow a comparison of the spectral fluorescence
properties, the spectra have been normalized to unit total fluores-
cence intensity.

Together with the absorption coefficient, which is an
essential parameter in the estimation of the film thickness
and which must therefore be derived from the identifica
tion, a catalogue of optical properties has been assembled.
This catalogue forms the basis for the definition of a
classification scheme and the development or improve-
ment of classification algorithms. It also provides infor-
mation on the optimization of the technical layout of the
detection system.

2. EXTRACTION OF DISCRIMINATING
FEATURES

The first and most important step in the definition of a
classification scheme is the extraction of features which
efficiently allow to distinguish between different objects
or classes of objects. The selection of these features
strongly affects the design of the classifier, and in most
cases has direct consequences on the design of the detector
unit.

In a preprogessing step all spectra have been normalized
to unit total fluorescence intensity observed in the entire
spectral range from 311 to 700nm. This has the advantage
that the detector system must not be calibrated in absolute
units. But the classification of course does only consider
the shape of the spectrum and makes no use of the absolute
fluorescence intensity, which, in some critical cases can
be an additional discriminating feature.

A very common way to extract such features is the defini-
tion of some simple logical or arithmetical relations be-
tween two or more detection wavelengths as, for example,
differences or/and ratios.

It was shown that already by defining a contrast function
between only three fluorescence wavelengths enables to
distinguish three different kinds of oil classes, heavy oils,
crude oils and light products. (Anderson et al., 1987).

But with those methods most parts of the information
stored in the spectra is lost. Changes in the spectral layout
of the detector system necessitate a revision of the whole
catalogue of spectra. On the other side, supplementing
new oils to the catalogue may result in a new layout of the
detection system. Finally, the efficiency of these features
depends on the intuitive skillness of the operator.

A more systematic approach in defining those features
without loosing important information is to perform a
principal component analysis. This method was developed
in the field of social sciences. A very thorough discussion
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of this method can be found by Hotelling (1933). It has
also widely been extended to biological, chemical and
physical sciences and has become a standard tool in pat-
tern recognition techniques. Especially in cases in which
large data sets have to be handled this method has found
to be extremely useful in data reduction (Anderson, 1984;
Fukunaga, 1972; Hangac, 1982; Watanabe, 1980).

Given n objects, on which measurements of m variables
have been performed, each object being represented by a
pattern vector in a m-dimensional feature space,

V= (Vb Vo, V3, ooy Vm)

and where the v; represent the value measured on each of
the m variables.

Since these variables generally show more or less correla-
tion they do not form an orthogonal basis of the feature
space. This means that there is a certain degree of redun-
dancy in the information of each variable which leads to
an unintentional increase of the weight of those variables
and can result in a coverage of important information.

The approach of principal component analysis now is to
find a new set of variables, which are linear combinations
of the original ones, and which will form an orthogonal
lower dimensional basis of the feature space. In a
geometrical interpretation this approach leads to a linear
projection of a high-dimensional manifold onto a lower
dimensional hyper plane under the constrain that the dis-
tance between the feature vector and its picture in the
hyper plane is minimal, which also means that the loss of
information is minimized (Bock, 1974).

It can be shown that the eigenvectors of the empirical
covariance matrix calculated among all feature vectors
optimally fulfil these requirements. The set of eigenvec-
tors are equivalent to the principal axes of the variance
hyper ellipsoid. Hence distinguishing objects of a certain
data set also means looking at the data in terms of vari-
ances.

Since these new variables are orthogonal, the covariance
between any two of them for each sample will be zero. The
total variance of the data set can therefore be expressed as
the sum of the variance of these new variables. The intrin-
sic dimensionality of the data set can be obtained by
discarding those variables (eigenvectors) which show the
lowest variances. These variables can therefore be con-
sidered to contain less information e.g. mostly noise. In
most cases this leads to a considerable reduction of data.

Following the idea of the principal component analysis,

each spectrum of the catalogue can be expressed by a
certain number of statistically independent variables,

Ij:Zi o Eij;izl,...,n;jzl,..., m (1)

where E;; denotes the i-th eigenvector of the covariance
matrix in the i-th detection channel and c; its weight in
approximating the entire spectrum. Due to its spectral
character, E; will be denoted as an eigenspectrum in the
following.

In case of linear mixing of different fluorescent substances
these eigenspectra can be related to the fluorescence spec-
tra of these compounds; the weighting factors c; represent
their concentration. But due to the very high absorption
coefficient of oils being in the order of 1/um this assump-
tion does not hold. Therefore the calculated eigenspectra
do not necessarly have any physical or chemical meaning.
Hence in this state the method can only be regarded as a
mathematical tool in handling the data.

The eigenanalysis of the covariance matrix of 51 spectra
of the catalogue has shown that only 4 eigenspectra con-
tain already 99% of the whole information of the cata-
logue. The total variance was distributed with 74% on the
first 17% on the second, 4% on the third and 4% on the
fourth eigenspectrum, respectively. This means that from
a fluorometric point of view the investigated oils can be
represented by a 4-tupel of loadings on the eigen- spectra
which is individual of each oil.

As an example of the quality of this method, Fig. 2a shows
the original spectrum of an Arabian crude oil (full line)
and the spectrum calculated on the basis of this four
eigenspectra (dashed line) which are also shown (dotted
lines). Obviously, almost the whole information of the
entire spectral range can be regained. The same holds for
a diesel oil which is shown in Fig. 2b. Oniy in those
regions where high frequency spectral features can be
found there are higher discrepancies between the curves.
In case of the fuel Jet-A1 shown in Fig.2¢ the information
can completely be regained.

Since the spectra have been measured in the range from
310 to 700 nm with a resolution of 1 nm, the application
of the principal component analysis superficially leads to
a considerable reduction of the data set by a factor of 100.

Limitation on the first two eigenspectra, which means a
retention of 91% of the total variance, allows a graphical
representation of the feature space in a plane. In Fig. 3 the
loadings on the eigenspectra E1 versus E2 are plotted for
all 52 samples of oil. Groups of oils can be identified in
this plot by regions with higher density of points.
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Fig. 2a - Original spectrum of an Arabian Heavy crude oil (full
line) and the reconstructed spectrum (dashed line) calculated on
the basis of four dominant eigenspectra (dotted lines).
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Fig. 2b - Same as in Fig. 2a for a Diesel oil. Only in those regions
where high frequency spectral featyres can be found there are
higher differences between the original and the recalculated
Spectrum.

Two general tendencies are found in Fig. 3:

- All crude oils including the heavy residuals are located
in a homogeneous area along line G1. Light crude oils
like the Nigerian Light or the Brent crude are located in
the lower part of this line while the heavy crude and
residual oils reside in its upper part. The course of line
G1 can therefore be regarded as a measure of the density
of the oil.

- The refined products form a considerable heterogeneous
cluster along the line G2. Within this cluster additional
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Fig. 2¢ - Same as in Fig. 2c for a fuel Jet-Al. The spectral
information is completely regained.

subclusters can be found which are the class of the
lubricating and diesel oils in the lower part of G2; the
petrols are in the middle, and the very light products in
the upper part of that line. This tendency of the line can
be taken as an information on the degree of fractionation
of these oils.
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Fig. 3 - Projection of the oil spectra on the first two dominant
eigenspectra which already account for approximately 91% of
the total variance.

In addition the plot clearly indicates that the discrimina-
tion of the vegetable oils from the refined products on the
basis of only two eigenspectra might be difficult to
achieve. A proper discrimination of these oils can only be
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done by using all four eigenspectra or by taking into
account the total fluorescence intensity as a fifth feature
as well.

In contrast to the refined products displayed in Fig.3 it is
not possible to define some subclusters within the cluster
of the crude oils. But a detailed k-means cluster analysis
of all 52 oil samples has shown that on the basis of all four
eigenspectra it is possible to define eight different oil
classes, which can be distinguished from each other. The
typical spectra of these oil classes are shown in Fig. 4 a
and b.
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Fig. 4a,b - Fluorescence spectra of different oil classes obtained
from a k-means clustering algorithm. Classification of oil pollu-
tions should be done according to these classes. Similar to the
spectra shown in Fig. I these spectra are also normalized to unit
total fluorescence intensity.

In addition to these findings analysis of the catalogue of
fluorescence signatures allows to find an optimal choise
of the number and spectral position of detection
wavelength. Since the characteristic features c; according
to equation (2) are independent of the detection
wavelength, four detection channels should be in principle
sufficient for the evaluation of these four characteristic
features. However, due to signal fluctuations or measure-
ment errors sufficient results could only be obtained by
using 12 detection channels.

An information on the optimal distribution of these detec-
tion channels within the entire spectrum can be obtained
from the variance spectrum calculated among all fluores-
cence signatures as shown in Fig. 5. This spectrum shows
high values in the UV region near the excitation
wavelength, followed by a plateau in the range from 370
to 430 nm approximately. The variance shows a minimum
at 500 nm and slightly higher values in the red. This curve
can be taken as a measure of the density of detection
wavelength selected within a certain spectral range. An
optimized detection system will therefore require a high
number of detection channels in the UV region, but only
a few channels in the green and a little more in the red.
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Fig. 5- Variance spectrum calculated from the catalogue spectra.
The variance observed in a certain wavelength intervall can be
taken as a measure of the density of detection channels, which
have optimally to be positioned in this spectral region.

As an example, Fig. 6 shows the original spectrum of a
Diesel oil and an Arabian Heavy crude oil (full lines). The
dots indicate the spectral position of the detection chan-
nels used with the newly developed laserfluorosensor
system (Hengstermann et al., 1991). Also the spectra
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calculated on the basis of the first four dominant eigen-
spectra are shown as dashed lines for comparison. For the
calculation only the values of the original spectrum at the
indicated wavelength have been considered.
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Fig. 6 - Original spectra of the an Arabian Heavy crude oil and
an Diesel oil (full lines). The dotted lines show the spectra
recalculated on the basis of the four dominant eigenspectra. For
the calculation only the intensities at the wavelengths indicated
by the dots have been considered. These wavelengths correspond
to the spectral position of detection channels of the new laser-
fluorosensor (Hengstermann 1991).

Comparison of Fig. 6 with the data from Fig. 2a, b and ¢,
where the whole information of the entire original spec-
trum has been considered in the calculation of the in-
dividual weight factors shows that nearly the whole
spectral information could be regained. Hence, it becomes
evident that an optimized sensor system may consist of
only twelve detection channels, which have to be posi-
tioned in the entire spectrum considering the variance
spectrum.

3. RECONSTRUCTION OF THE FLUORESCENCE
SPECTRUM

The identification of only those oil types requires the
knowledge of the fluorescence signature of the pure oil.
But in airborne applications only spectra, wich are taken
over optically thick parts of an oil spill, represent the
fluorescence spectrum of the pure oil.

In case of discharges of small volumes of oil this condition
is only rarely fulfilled. Very thin oil films are partially
transparent to the laser light and the fluorescence signal
from the oil will be more or less superimposed by fluores-
cence contributions from naturally occuring organic mat-

ter (gelbstoff) in the water column. To overcome this
limitation, an algorithm has to be provided, which allows
to isolate the fluorescence from this fluorescence back-
ground in case of optically thin films.

The mathematical model of the measuring process is based
on the integration of the lidar equation of Browell (1977).
Application of this equation on a two layer model of the
oil/water column allows to express the fluorescence signal
P obtained from an optically thin oil layer with film
thickness d at a certain point within the oil spill in terms
of the fluorescence signal expected from the pure oil 6/a
and the water column Gy/ky, (Kung and Itzkan, 1976):

POW = [A/(mH)zl [(50/3.0 + (G\V/kw - 00/30) Cxp (—ao * d)]

with A being a constant including instrumental parame-
ters, H the aircraft flight altitude and m the refractive index
of the air/water or air/oil interface, respectively. o and
oy denote the fluorescence quantum efficiency of the oil
an the water, a;, the sum of the absorption coefficients of
the oil at the excitation and detection wavelength, and ky,
the attenuation coefficients of the water.

Assuming that the oil spill can be found in an areca where
there are only small variations in the concentration of the
organic substances in the water column and that the com-
position of the oil will not change within the spill, equation
(3) can be rewritten in terms of the fluorescence properties
of the water column and the oil, respectively:

(4)

where Py, is the fluorescence signal of the oil free water
column and P, the fluorescence signal expected from an
optically thick part of oil slick.

Pow = Pgo + (Py-Pg) exp (-ag d)

An estimation of the oil specific fluorescence c/ag from
the signals is difficult, if no optically thick part within the
slick can be found. Then, an estimate of the absorption
coefficient of the oil cannot be derived from the fluores-
cence signatures. A possible way to overcome this prob-
lem makes use of the redundancy in the different detection
channels if film thickness data have to be derived.

Information about the film thickness distribution within
the oil slick can preferably be obtained from the water
Raman scattering, which in the case of an oil-free water
surface provides an intense, well-defined peak at 344nm
when excited at 308nm. Due to its very narrow bandwidth
when compared to the other structures in the spectrum, this
signal can easily be isolated from the underlying fluores-
cence background arising from gelbstoff and mineral oil
(Hoge and Swift, 1980).
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Normalization of this signal Ry to the water Raman
intensity Ry, obtained outside the slick over the oil-free
water column yields:

exp (- agR d) =Ry w /Ry (5)

Hence a solution for the film thickness d requires an
estimate of the oil specific absorption coefficient ayR,
which also must be derived from the catalogue of optical
signatures.

Inserting the information on the oil film thickness from eq.
(4) into eq. (5) yields:
(/2 R)

PO.\V = PO + (PV\’ = Po) (RO,\V / RVV) (6)
Successive measurements at different locations of the oil
slick result in a system of nonlinear equations with 3
unkown parameters P, a, and a,R. Assuming a sufficient
number of measurement points these parameters can be
extracted by a nonlinear least-square method.

It is known from experimental measurements, that the
absorption coefficient of oils decreases monotonously
with increasing wavelength. Since a; and ayR are the sum
of the absorption coefficients at the excitation and the
detection wavelength respectively calculation of the ex-
ponent (a, / ayR) can be done under the constraint

0.5 < (a,/ aR) < 2.0 (7)

Taking the fluorescence background at the Raman scatter-
ing wavelength, equation (6) would be reduced to a simple
linear expression.

Gathering of information from two different spectral
channels simultaneously necessitates an accurate spectral
calibration of the detector system at least in relative units.

To prove its usefulness, the method has been tested under
several conditions with computer simulated laser
fluorosensor signals. Simulation is done under the as-
sumption, that the fluorescence and Raman signals are
normally distributed around a mean value with a given
deviation, as it can be observed in flight experiments.

The simulations are done for a system with two detection
channels in which one channel corresponds to the water
Raman scattering signal and the other can be positioned
elsewhere in the spectrum. Normally distributed signals in
each detection channel have been generated from a ran-
dom number generator. Since there is no information
available on the preferred statistical distribution of the oil
film thickness it is assumed, that the film thickness within
the oil spill is equally distributed in a given interval.

A typical result of the simulation is shown in Fig. 7a. Both,
the Raman and the fluorescence signal vary around a mean
value of 20 scale units. The fluctuation is set to 10% of the
mean value which agrees with the typical noise amplitude
observed in airborne experiments. The thickness of the oil
spill is equally distributed in an interval of O to 2 pm. The
optical properties of the oil correspond to the light crude
oil class.
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Fig. 7a - Computer simulations of laserfluorosensor signals
expected from optically thin oil films. The fluorescence of the
water column and the Water Raman scattering have been set to
values of 20 scale units with a variance of 10%. The thickness of
the oil spill is assumed to be equally distributed in the intervall
fromO0to 2 mm. Optical properties were taken from the light crude
oil class. The fluorescence of the oil has been set to 5 scale units
and the absorption coefficien to 1.0 um’' at the excitation
wavelength and 0.6 wn™ and 0.4 wm'! at the Raman and the
fluorescence wavelength, respectively. The optical properties of
the oil correspond to the light crude oil class.

Fig. 7b shows a scatter plot of the fluorescence signal as
a function of the water Raman intensity (dots) and the
result of the non-linear least-square analysis according to
equ. (6). The analysis is performed with an implementa-
tion of the Levenberg-Marquardt method, which has be-
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Fig. 7b - Scatter plot of fluorescence versus water Raman signal shown in Fig. 7a and the result of the nonlinear least-square analysis
(full line). The fluorescence of the pure oil can be found at the intersection of this line and the ordinate. From non-linear least- square
analysis a fluorescence intensity of the pure oil of 4.76 scale units and a ratio of the absorption coefficients ATp Raman and at the

fluorescence wavelength ay/a R = 0.82 has been calculated.

come a standard in nonlinear data modelling. The im-
plementation of this method works straight forward and
no special measures have been provided to prevent the
algorithm from taking local minima as a best fit of the
desired parameters. But as it can be seen from the legend
of Fig. 7b already with this simple approach, the initial
values of the water and oil fluorescence can be reproduced
by the nonlinear least-square analysis with a deviation
better than 5%. A closer analysis under different condi-
tions has shown that, up to a variance of 15% in the Raman
and in the fluorescence signal, respectively, sufficient
results can be obtained.

CONCLUSION

In laboratory investigations a catalogue of optical proper-
ties of different mineral oils has been assembled. This
catalogue includes the fluorescence signatures of oils as

well as their spectral absorption coefficient, which is an
essential parameter in the estimation of the film thickness
of slicks on the water surface.

An analysis of the fluorescence signatures has shown, that
the information contained in the catalogue can be repre-
sented without loss of important information by 4 spectral
features. A linear combination of these features with four
characteristic weight factors allow a quantitative descrip-
tion of the individual fluorescence spectra, and therefore
each oil can be represented by a 4-tupel of these weight
factors.

As a consequence of this reduction of the data which are
representative for each oil, the experimental efforts for
gathering the information necessary to identify a certain
oil type can be drastically reduced.

The investigations have shown that twelve detection chan-
nels are sufficient to calculate the four significant features
from a fluorescence spectrum. This reduction of the data
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also will enable data interpretation in real time. By inter-
preting the variance spectrum of the entire catalogue it is
possible to define optimal positions for the detection chan-
nels in the wavelength range from 320 to 700 nm.

From computer simulations of laser fluorosensor signal
returns expected from optically thin oil films, a method
has been derived, which allows for the isolation of the
fluorescence signature of the pure oil from the fluores-
cence background of naturally occuring organic matter.

Although the results of those investigations have not yet
been verified in field experiments, there is high confi-
dence that they will represent a basic tool for the inter-
pretation of further data which will come up from the new
developed laser fluorosensor data designed for maritime
surveillance. A first implementation of routines based on
these results will be tested at the end of this year.

Especially it has to be emphasized, that no considerations
of weathering effects of the oil on the water surface, which
will drastically change the optical properties of the of the
oil, have been taken so far. The influence of these effects
on the fate of the oil on the water surface will be investi-
gated in future to enable a more quantitative and reliable
data analysis.
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