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ABSTRACT

UPSTAIRS is a raster image processing system for re-
motely sensed data. In this paper, a brief overview of the
system architecture of UPSTAIRS is given. UPSTAIRS
maintains a proprietary data base for images, look-up
tables, ground control points, chips and digital elevation
models.

An interface to geographical information systems is real-
ized for raster data and is planned for vector data.

In the second part of this paper, the UPSTAIRS function
for geometric processing are briefly outlined. Next, the
UPSTAIRS subsystem for supervised classification is pre-
sented. Conventional (maximum likelihood) as well as
non-orthodox classification methods are presented. New
classification paradigms such as fuzzy sets and context-
sensitive heuristics are discussed. A new approach to
multi-temporal classification is presented. Finally, the ar-
chitecture of geocoded land-use database is proposed. A
quasi-automatic procedure for geocode newly acquired
data and a classification process based on the fuzzy set
paradigm is presented. Integration of new data into the
database is discussed.

1. UPSTAIRS

1.1 Introduction

UPSTAIRS (Universal Processing System for Treasuring
up and Analyzing Images in Remote Sensing) is a raster
image system for processing remotely sensed data (mainly
LANDSAT). UPSTAIRS has been developped since 1980
in cooperation with DLR (Deutsche Forschungsanstalt fiir
Luft- und Raumfahrt, Oberpfaffenhofen) and BGR (Bun-
desanstalt fiir Geowissenschaften und Rohstoffe, Han-
nover) and is in operation at several research and
university institutes. DLR is the principal user; essential

parts of the geocoding software for ERS-1 have been
developped there on the basis of UPSTAIRS.
UPSTAIRS was designed as turn-key system. However,
users are encouraged to develop their own applications.
UPSTAIRS has been implemented on DEC VAX systems
as well as on SUN UNIX workstations.

UPSTAIRS provides to the user a fairly comprehensive
set of application programs. Most of the applications are
applicable to any raster data independent of the data
source; other programs are tailored to LANDSAT SPOT,
SPOT or SAR data.

1.2 Database

One of the salient features of UPSTAIRS is its proprietory
database which is in fact a complex file system and not
comparable to a commercially available product like a
relational database. The motivation for providing a
database for processing remotely sensed images has been:

- improved consistency of data

- virtually unlimited space for storing image data (no
physical limit, but by the sum of all disk space)

- database access routines provide a number of service

- easy realization of distributed data within a network.

The UPSTAIRS database is comprised of several disjoint
subsystems. Each subsystem has the same physical, but a
distinct logical organization. The database as a whole
provides storage and access to the following objects:
layers: rectangles of image raster data; “monospectral
image”

images: ordered set of layers; “multispectral image”
lattices: set of a layers in the same hierarchy level; in case
of overlapping: precedence is defined; between layers:
background grey-value; lattices may be multispectral like
images

look-up tables
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training areas

class statistics

image control points: reference points associated with
image data; pixel coordinates

ground control points (GCP): reference points inde-
pendent of any particular image; geographic coordinates
chips: small rectangles of image data representing some
neighborhood of a GCP

maps: map sheets used for identifying GCPs

digital elevation models: several logical separate
databases for digital elevation data

Some of these objects are public, others are privately
owned by one or more users.

1.3 Physical Organization

The database consists of up to 255 files. Each file contains
only one type of objects, e.g. image data, look-up tables,
GCPs, etc. Dependent on the object, the bucket size (re-
cord size) is fixed. Each bucket in the database has a
unique identifier. Access to data is performed by some
kind of demand paging which is implemented in software.
For example, when processing an image, the access
routines keep the most recently used data in memory and
perform necessary updating (write through). The main
benefit of this method is that application programs are
relieved from the task of optimizing the use of available
main memory.

1.4 Logical Organization

Private data comprise image-related data (image data,
auxiliary data, image control points, training areas, class
statistics) and look-up tables. These data are associated
with images which are identified by a name. For each user,
a catalog with the currently stored images and look-up
tables is held. Public data are ground control points, chips
and maps as well as digital elevation models.

The image data are organized as sets of layers which are
arrays of any size. Pixel values may be of type byte,
halfword, fullword, real, or complex. Layers are identified
by a name. Layers may be associated with more than one
image with often saves duplicating image data. A valuable
design feature is the association of a look-up table with a
layer; in this way, pixel values may undergo a translation
which is performed when accessing the data. For example,
performing a contrast enhancement or density slicing does
not require physical copying the image data; instead, the
following is done:

1) a new image (output image) is created; this image is

void of layers

2) the layers of the input image are also associated with
the outputimage; so, the layer data are stored just once;
however, there are two different access paths to the
layer data

3) look-up tables are stored with the output layers; thus,
when accessing the layer data via the output image, a
translation of the pixel values is performed. The origi-
nal pixel values are preserved and are retrived when
accessed via the input image.

1.5 Access Methods

Some of the recurrent functions in image processing are

encorporated in the database access services. These func-

tions are performed when writing to or reading from the

database:

- data conversion (e.g. byte to halfword)

table look-up

- linear mapping of gray-values

- clipping of gray-values

- calculating a histogram of gray-values

- resampling (nearest neighbor, bilinear, cubic convolu-
tion)

1.6 Interfaces

UPSTAIRS has only limited capabilities for processor
vector data. It was never designed for performing applica-
tions which are based on vector processing operations.
UPSTAIRS can be understood as a complementary sub-
system for geographic information systems. Whereas an
interface for exchanging vector data is only planned for,
UPSTAIRS supports a number of common raster image
formats for importing and exporting image data (e.g. SUN
raster format, ERDAS).

2. GEOMETRICAL PROCESSING

2.1 Database

The database provides services for storing and accessing
public data for geometric processing:

- map sheets

- ground control points (GCP) and chips

- digital elevation model (DEM)

Map sheets

The purpose of defining map sheets in the database is to
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impose some hierarchical order on some of the GCPs.
They are used when digitizing GCPs.

Ground Control Points and Chips

GCP coordinates are stored in longitude and latitude.
When accessing GCPs, a transformation of the coordi-
nates to UTM or Grauss-Kruger may be requested. Op-
tionally, one or more chips may be stored with each GCP
[Schreier, Kosmann and Schumacher, 1988].

Digital Elevation Model

Many DEMs may be held in the database concurrently.
Each DEM is based on geographic coordinates and may
cover the whole earth. Data may be stored in one of some
20 different resolutions between 1 second and 1.5 degrees.
Within a single DEM, any combination of these resolu-
tions is possible; however, one data value only may be
assigned to a location. The elevation values are of type
integer (16 bits) [Schreier, Knoepfle, Craubner and
Schumacher, 1990].

Data are organized as raster data; because of the im-
plementation as a tree, fast access to any single location
or to any rectangle is possible.

2.2 Methods

Geometric correction algorithms for image raster data in
UPSTAIRS are of type ruber sheeting: polyonomial map-
pings to reference images as well as to some map system
(GCPs). For LANDSAT TM raw data, a correction
process based on a system model and ephemeris data has
been developped.

A full-scale application based on the UPSTAIRS database
services (GCPs and chips as well as DEMs) is the GEOS
system, developped by DLR, IPI (Institut fur Photogram-
metrie und Ingenieurvermessungen, Hannover) and two
other university institutes. GEOS is an operational system
for the D-PAF SAR geocoding [Schreier, Kosmann and
Roth, 1990].

3. CLASSIFICATION
3.1 Introduction
The classification subsystem in UPSTAIRS provides tech-

niques and methods for supervised classification. The
basic classification method in UPSTAIRS is the maximum

likelihood method as this method is the classical method
and has a sound theoretical foundation [Richards, 1986].
However, this method - like most conventional classifica-
tion methods - has a number of drawbacks. Some of the
problems with this method are of technical nature:

« the prerequisite of normal distribution of the features is

not always guaranteed in practice
* ill-conditioned covariance matrices may be encountered

Other drawbacks are of a more fundamental nature. So,
the model underlying the maximum likelihood method is
a probalistic one: it is not well suited for coping with vague
and imprecise information like the class coverage of small
rectangular areas (pixels). Therefore, in UPSTAIRS this
method has been generalized and developped further:

* to circumvent technical problems, a robust implementa-

tion of the maximum likelihood method is available;

in order to facilitate the process of feature selection, a

generalization of the method (which is no longer maxi-

mum likelihood in a strict sense) is provided;

* as an alternative, a fuzzy classification concept has been

developped which is more appropriate to deal with the

vagueness of pixel classification;

based on this fuzzy concept, a tentative, partial solution

to the problem of detecting and resolving mixed pixels

is provided;

e a new approach to multi-temporal classification is
offered;

« an effective contest-sensitive fuzzy reclassification
method is provided.

All of these methods are discussed at length in
[Schumacher, 1991].

3.2 Data
Data for classification are comprised of:

- training areas
- class statistics

The user may choose any number of subsets of training
areas for calculating class statistics. The extremes are:

- all training areas are combined
- each training area is considered as a separate subclass

So, some emphasis has been put on developping a robust
classification method which can handle this situation.
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3.3 Standard Methods

Over time, several different implementations have been
made available in UPSTAIRS. In my view, the best
method which incidentally is the standard implementation
in UPSTAIRS today, is what I call the SVD method. SVD
stands for singular value decomposition. Instead of calcu-
lating the Mahalanobis distances for all classes in a com-
mon feature space, these distances are calculated in
class-specific spaces of the same dimension. For each
class, a principal components analysis is performed. The
eigenvectors of this analysis form the coordinates of the
class- specific feature space (transformed features). The
distances measured in the transformed feature spaces can
be compared in the same way as the original distances and
result in identical classification results.

Although this seems a bit complicated in the first place,
there are several advantages of this method:

e as a mattera fact, compared to the conventional im-
plementation, this method can be expected to be faster
by half an order of magnitude;

« in practice, covariance matrices easily may be ill- con-
ditioned; with the SVD method, singularities of the
covariance matrices are detected. The resolution of this
problem is the reduction of the dimension n of the feature
space: for m < n main features the Mahalanobis dis-
tances are calculated, for the remaining residual fea-
tures r = n - m features a threshold method is used
(essentially, for the residual features, the hyper-ellipsoid
is approximated by a hyper-parallel-epiped).
an analysis of the eigenvalues of the covariance matrices
reveals that in practice most of the information that can be
used for discriminating among the classes is contained in
only a few of the transformed features. That is, there is
good reason to discard some of the transformed features
corresponding to small eigenvalues. Therefore, a reduc-
tion cf the dimension of the feature space is of intrinsic
value even if there is no need for numerical reasons.

This implementation has the potential for classifyng re-
motely sensed data of high feature dimension, e.g. data of
imaging spectrometers. Even for LANDSAT data, there
should be no need any more to select a fixed subset of the
available features. It is perfectly reasonable to execute this
algorithm with all available original features; this method
adjusts to any difficulties automatically and gets the most
information out of the features.

3.4 Fuzzy Classification

A very important concept for improving conventional
classification methods is the paradigms of fuzzy sets

[Zadeh, 1977]. In the literature, a number of authors pro-
pose classification methods using the fuzzy set concept
(e.g. [Wang, 1990)).

The limitation of the classical approach to pixel classifi-
cation is obvious. A pixel assigned to exactly one class (or
is left unassigned); however, in reality, a pixel might be a
mixture of several classes. The concept of fuzzy sets
allows for the distinction of uncertainty if we do not have
enough information; however, if additional features were
available, we possibly could reduce the uncertainty of an
assignment.

On the other hand, in case a pixel does not fit exactly to
one of a set of given classes, an assignment can only be
vague: additional information cannot resolve the inherent
dilemma.

Whereas uncertainty may be handled by the classical
concept of probability, vagueness may be taken care of by
memberships. As for probabilities, a memebership is a real
number in the range O to 1. However, as opposed to
probabilities, memberships do not have to be normalized:
the memberships of a pixel to a number of classes do not
have to add up to 1. This is of great advantage in later steps
of the classification and for analysis purposes: the close-
ness of fit to each class is preserved.

So, the first application of fuzzy sets in UPSTAIRS is a
generalization of the maximum likelihood method where
the resultant classification of a pixel is not a single class
assignment, but a vector of class memberships (in reality,
only the three classes with greatest memberships are
stored). In order to determine memberships, the resultant
Mahalanobis distances have to be transformed into mem-
berships. There is no unique way for doing this; in UP-
STAIRS, we have chosen a somewhat arbitrary
transformation. As classes are no longer ordered by likeli-
hood, but by membership instead, this is no longer a
maximum likelhood classifier. The advantage of this
fuzzy method is in additional membership information
which may be used in later analysis steps.

However the benefits of the fuzzy concepts are greater by
far. With memberships we do have a means for normaliz-
ing distances in feature space, i.e. we are able to compare
closeness of a pixel to any class by comparing member-
ships no matter how we estimate the memberships. The
practical consequences are:

* the fuzzy classifier presented above may be generalized
further such that the Mahalanobis distances are calcu-
lated in feature spaces of different dimensions. When
comparing likelihood (probability distributions), the
same dimension is required; therefore, the SVD-classi-
fier presented above required the same dimension m of
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main features for all classes. A fuzzy version of the
SVD-classifier allows different numbers of main fea-
tures for the various classes.

« different classifiers may be combined in a single classi-
fication run. For example, a box classifier (essentially a
parallel-epided classified with an internal metric for
assigning memberships) may be used for some classes,
a Mahalanobis classifier for others.

3.5 Class-Specific Features

Technically, it is now possible to design fuzzy classifiers
which are based on a different number of features. In my
view, this is a useful and potentially powerful concept.
For the SVD-classifier, it is no longer necessary to require
the same number of main features and residual features;
there may be a class-specific division of m; main features
and r; residual features such that m; + r; = n. As a further
generalization, the need to require the same set of n orig-
inal features can be abandonned. Thus, any n; original
features should be allowed.

This alleviates a problem anyone is confronted with when
applying the maximum likelihood classifier in practice:
very often, it is difficult to fulfill the theroetical require-
ments of the maximum likelihood method: multivariate
normal distribution of the features in cases with a large
number of features or small training areas, it is difficult to
get a normal distribution in all features. Thus, it can be
argued, it is better to discard features for which the re-
quirement of normality is not fulfilled than to use these
features getting poor results. With the proposed concept,
it is possible to select features on a per class basis.

Of course, as soon as we do have different feature spaces
which, in the extreme, actually may be disjoint, we may
loose some power for discriminating among the classes.
So, there is a trade-off between using too many features
of possibly poor statistical quality and too few features
losing discriminating power. This trade-off should be
solved by supervision of the user.

3.6 Mixed Pixels

Mixed pixels are a phenomenon difficult to cope with and
particularly frequent in scenes acquired by satellites. With
fuzzy classification, a tentative, partial solution can be
tried to come up with. The solution consist of two steps to
be excuted after completion of the per-pixel fuzzy classi-
fication:

1) detection of possible mixed pixels

2) resolution of apparent mixed pixels

Detection

The first task is to find a subset of pixels which possibly
could be pixels mixed of two classes:

- pixel with low (or zero) membership and at least two
neighborhood pixels with high membership in two
different classes;

isolated pixels: all neighbors are assigned at least two
different classes;

all pixels which are located on the border of two class
segments; these pixels may be found by appling rules
such as “select pixel if in the neighborhood there are only
two different classes assigned with a more or less high
membership and with a count of minimum 3 and maxi-
mum 5.

The reason for requesting at least two classes in the 3x3-
neighborhood is that we need some hint about classes
contributing to the pixel. The information “possibly mixed
pixel” without possible candidate classes is of no value.

Resolution of Mixed Pixels

The basic idea for resolving a mixed pixel is to examine
the location of that pixel in the feature space relative to the
location of the cluster centers of the candidate classes.
Technically, this can be done as follows:

- besides the pure candidate classes, a number of mixtures
of both classes are constructed as additional (synthetic)
classes, the statistics of which can be calculated from the
statistics of the two candidate classes;

- for the pixel in question, from all synthetic mixed classes
the maximum membership is determined;

- the maximum membership thus obtained is compared to
the membership of the original pixel cYassification; if the
membership is greater, the pixel is marked as a mixed
pixel; the labels of the mixed pixel are the two candidate
classes; the location of the assigned synthetic mixed
class in the feature space is an indication for the relative
area coverage of the mixed pixel.

3.7 Context-sensitive Re-classification

When remotely sensed data is classified on a per-pixel
basis only, a great deal of information is ignored. The
surrounding of a pixel may contribute in removing some
uncertainty about the correct class. A traditional approach
to integrating context information in the classification
process is based on probabilistic relaxation methods
[Hummel and Zucker, 1983]. The main problems with
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these methods are its instability and the fact that prob-
abilities give no good estimate for the closeness of pixels
with its respective classes.

In UPSTAIRS, a completely different approach was tried,
based on a fuzzy per-pixel pre-classification. The basic
idea is to view spectral and context information as two
separate sources of information. Both have to be combined
somehow in order to get a final conclusion. This resolution
process is contingent on certain class characteristics and
on the entropy in the vicinity of the pixel in question.
Technically, this re-classification method starts with the
fuzzy classification map obtained by a fuzzy pre-classif-
cation. For each pixel, the spectral memberships are given
as the result of this per-pixel classification. The context
information is estimated on the basis of this spectral mem-
berships in the neighborhood of the pixel. After combining
both memberships for each class, the resultant member-
ships are taken as the preliminary classification map. In a
next iteration, the same process starts with these updated
results instead of the original spectral memberships. After
very few iterations, the process can be stopped.

In figure 1 the basic situation is shown.

If spectral and contextual membership are highly corre-
lated, deciding on the resultant membership is easy. Other-
wise, resolution of the situation depends on several
factors.

h
¢
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}
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Fig. 1 - Spectral Information p* versus Context 0.

As a first example, consider a non homogeneous class
usually covering very small segments. Then there should
not be expected too much information from analyzingthe
neighborhood of such a pixel. Next, consider a homo-

geneous class normaly covering large areas. In this case,
the degree of coverage of the neighborhood with the same
class should influence the class membership. However,
this is only true if the neighborhood is of low entropy; if
the class coverage of the vicinity of the pixel in question
is chaotic, no information can be derived from the context
analysis.

Besides the homogeneity of a class, two other global
characteristics of classes can be used:

- the degree of co-occurence of all pairs of classes (this
criterion is in fact the rationale behind the probabilistic
relaxation methods, t00);

- the distribution of a class within a scene; if pixels of the
same class are within the same region of the scene, the
likelihood for a class instance is slightly improved.

It turns out that the effectiveness of the three criteria is in
the order

1) homogeneity

2) co-occurrence

3) global distribution

So, in order to find a resultant membership in the general
case, the following parameters have to be estimated:

* a global measure for the homogeneity and a global
distribution of all classes as well as estimates for the
degree of co- occurrence for all pairs of classes;

* alocal measure in the 3x3-neighborhood for homogene-
ity and co-occurrence;

 a measure for the applicability of any context criterion
for the pixel in question based on the local entropy.

The global measures are estimated on the basis of the pre-
classification results. For details on how these measures
are estimated and on the entire re-classification process I
want to refer to [Schumacher, 1991].

This method has been quantitatively tested with a number
of synthetic scenes. In all cases, there was a significant
improvement over the results of the preclassification; the
error rate could be expected to be reduced by half. It was
also shown, that the results using this fuzzy re-classifica-
tion method can be expected to be much better than results
obtained by using probabilistic relaxation methods.

3.8 Multi-temporal Classification

An approach of considerable practical significance is the
classification of geometrically congruent scenes of differ-
ent dates or different sensors: multi-temporal classifica-
tion. There are at least two different concepts for
performing multi-temporal classifications:
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* the stacked approach: all features are combined to one
feature set which is taken as an input for some classifi-
cation method. This disadvantage is that this is not useful
approach if this process has to be repeated over time;
also this stacked approach requires valid data for all
scenes (e.g. clouds in any one scene preclude classifying
those pixels)

some sequential classification process where the former
classification results are incorporated somehow in the
classification process of later scenes (e.g. as a-priori
probabilities) [Swain, 1978]. The disadvantage of these
methods is missing simmetry: later classifications do
have more influence on the results than former ones.

The outlined fuzzy classification methods lead to a new
approach to multitemporal classification which is sim-
metrical and applicable to as many scenes as required. In
addition, it is possible to control the influence of the
various scenes by assigning weights.

The principle is to classify all geometrically congruent
scenes separately and combining the fuzzy classification
results by performing a fuzzy union: basically, for each
pixel and each class, the maximum of memberships is
taken.

In [Schumacher, 1991] I suggest to use a slightly different
implementation of the fuzzy union. As a matter of fact, for
the implementation of fuzzy set operations, at least half a
dozen of different function families have been proposed
[Klir and Folger, 1988]. The generalized fuzzy union in
[Schumacher, 1991] allows for introducing weights in the
various operands of the union operator, thus enabling
giving weights to the different scenes on a per-class basis.

4, THEMATIC DATABASE
4.1 Introduction

Having presented the tools available for geometrically
processing and classifying remotely sensed data in UP-
STAIRS, I will propose now an implementation of a
geocoded thematic database, i.e. a database for the pur-
pose of maintaining and processing land-use information.
The utility of such a database for a GIS is obvious.

In the late seventies, the feasibility of such a database had
been studied in a project at DLR at Oberpfaffennhofen
[BMBau, 1979], sponsored by the German “Bundesmin-
isterium fur raumordnung, Bauwesen und Stadtebau”
(Ministery for Urban and Rural Development). The aim of
this project was to demonstrate the feasibility of im-
plementing a system capable of

* answering queries about the acreage of various land-use
classes within a region (e.g. a municipality);

» producing maps presenting the land use classes within a
region.

So, there were two kinds of information to be acquired and

stored:

* borders of areas of interest (e.g. municipalites, counties,
etc.);

» classification maps (more precise: for each area cell
(pixel), assignment to exactly one of a pre-specified set
of land-use classes)

Of course, for both types of data a common coordinate

system and a fixel resolution had to be chosen. The source

for the classification map was to be LANDSAT MSS data,

the periodical acquisition of which was to led to a continu-

ing actualization of the classification map. The result of

that study was not very encouraging; essentially, pixels

falsely classified were too numerous.

Today, an approach for implementing such a land-use

database should be much more promising:

1) the quality of the source data is better (e.g. TM, SPOT);

2) the classification methods available today are much
more powerful;

3) the paradigm of fuzzy sets provides the means for a
more realistic knowledge presentation and processing
at the stored land-use information.

In this section, I will

1) discuss some of the inherent and the methodical prob-
lems to be solved;

2) propose an architecture for the database;

3) present quasi-automatic procedures for geocoding and
classifying source data;

4) discuss methods for integrating newly acquired data
into the database.

4.2 Some Problems and Parameters

Functionally, we have to answer at least three different

questions:

1) how is the knowledge about the land-use to be charac-

terized and stored?

2) how is the knowledge to be acquired and integrated?

3) how is the knowledge to be accessed and presented?

We are confronted with different inherent problems as a

direct result of discretization:

» different land-use over space (mixed pixels)

« different land-use over time (e.g. change in agricultural
areas, variation in borders of water bodies)
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* imprecise, ambiguous assignments of pixels because of
limited numbers and idealization of land-use classes

« difficulty to decide whether a change in land-use is
permanent (e.g. forest to street) or temporary (e.g.
change in water level of a lake); both cases should be
treated differently in the database

Furthermore, methodical problems have to be solved:

» geometric correction of newly acquired source data (re-
questing sub-pixel accuracy)

* automatic classification of newly acquired source data

« integration of classified data and resolution of conflicts
between stored data (historical) and new data (actual);
one difficluty here is to judge the confidence in the
correctness of the classification of the newly acquired
data versus the historical weight of the stored data.

For implementing a land-use database, a number of para-
meters have to be decided on :

- map system

- resolution

- a fixed set of land-use classes

In my view, it clear that the paradigm of fuzzy sets is of
great advantage for the implementation of a land-use
database. Assigning mamberships to classes for each pixel
instead of requiring a unique class assignment alleviates
some of the problem stated above. The advantage of using
fuzzy sets is not only that this is more adequate for ex-
pressing assignment to land-use classes, it also enables the
use of the advanced classification methods presented
above. Also, fuzzy sets do not only hels in expressing
vagueness; storing memberships to classes keeps a lot
more information about the classified pixel which helps in
integrating new classified data and in processing stored
information.

4.3 Architecture of a Land-Use Database

The first main decision to be made when designing a
geoceded database, is choosing a map system and a reso-
lution (pixel size). Two map systems are obviously sui-
table:

1) UTM (or Gauss-Kruger)

2) geographic (longitude/latitude)

As opposed to the DEM database in UPSTAIRS, a land-
use database can be expected to cover only a relatively
small area of interest (say, within one UTM zone). There-
fore, UTM should be the appropriate map system. The
disadvantage of geographic coordinates obviously is that
the area size pixels do vary with the latitude; therefore, to

obtain any area statistics, each pixel within an area has to
be weighted by a factor which is a function of the latitude.
Independent of the chosen map system, the implementa-
tion within UPSTAIRS would be analoguous to the im-
plementation of the DEM database. However, as opposed
to the DEM database (where there are several hierarchy
levels of different resolution), for a land-use database a
unique resolution could be chosen.

Another important parameter of the database layout is the
amount of information to be stored with each pixel. For
the thematic information, I suggest to store up to three
classes with the corresponding membership, resulting in 6
bytes per pixel. If mixed pixels are to be considered,
another byte per class is required, thus resulting in 9 bytes
per pixel.

The original source data should probably be stored in a
separate geocoded source database where each scene is
stored as an entity. Holding source data in the thematic
database as additional layers, this essentially would re-
quire the mosaicking of overlapping geoceded scenes.
However, as mosaicking results in a severe radiometric
distortion, this should not be a feasible option for an
operational system.

In the pilot project mentioned above [BMBau, 1979], the
thematic data were not stored as raster data in a straight-
forward manner, but as quadtrees. Quadtrees are very
efficient for performing Boolean operations as e.g. deter-
mining the set of pixels of a certain land-use class within
a specific region. However, in that former project at most
one class was assigned to each pixel which resulted in a
vast reduction of redundance in the databse (i.e. a quadtree
was also an efficient method to store the information).
With our approach using fuzzy sets, I cannot see how the
quadtree method should be superior to the straight raster
method suggested above.

4.4 Quasi-Automatic Geometric Processing

An operational system to produce geocoded SAR data has
been implemented in the GEOS system which is to process
ERS-1 data at the German D-PAF [Schreier, Kosmann and
Roth, 1990]. The GEOS system relies on the UPSTAIRS
subsystems for ground control points, chips and digital
elevation models. Since the proposed thematic database is
primarily to be based on LANDSAT and SPOT data, an
operational geocoding system for optical sensor data
would have to be developped.
Such a subsystem could be outlined as follows:
1) Approximate geometric correction: a mapping from
the geocoded coordinate system into the new scene is
determined. This could be achieved by means of a
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geometric model of the sensor/platform system and
ephemeris data (using possibly a few tie points).

2) An equi-distant grid is chosen for the area of the geo-
coded scene. For each grid point, a chip (search sea) of
some fixed size (later to be used for a correlation
process) is resampled from the new scene data, using
the mapping found in the step 1.

3) For each grid point, a best relative shift between the
search area and some geocoded data is estimated by
means of some correlation process.

This correlation should provide - in addition to shifts
in two directions - some measure for the degree of
confidence in the correctness of these shifts (e.g. a high
correlation coefficinet will lead to a high confidence).

4) having an estimate of a shift in all grid points, an
approximation algorithms is applied for shifts in x and
y separately. This approximation algorithms is a gener-
alization of a method suggested by Grimson [Grimson,
1981], including weights for the disparities in the grid
points (zero confidence implies zero cost as no null
value is available) [Schumacher, 1991]. The result of
this step is a mapping in x and y in all discrete grid
points (shifts are in sub-pixel size range).

5) The mappingof step 1 is to be combined with the
deviations in the grid points (step 4). Thus, we do have
a mapping from the geocoded area back into the new
scene for all grid points.

6) The resampling of the new scene to the geocoded
system is performed.

The prerequisite for this process is that at least one geo-
coded scene of the same area is available (i.e. we are
talking about integrating new scenes). If more than one
geocoded scene is available, the correlation process could
be performed with any of these data (e.g. taking the one
with the most radiometric similarity).

4.5 Automatic Classification

As a natural consequence of the fixed number of land-use
classes, classification of new scenes should be supervised
which requires some classifier training. The conventional
approach of interactively defining training areas is cer-
tainly not feasible. The nextideais, to define training areas
once and store these in a database, comparable to chips in
the GCP database. The problem with this approach is that
training areas defined in a single scene may not be optimal
in another scene. For example, a piece of forest might be
homogenous in the scene used for defining a training area.
In another scene dating from a different season, this piece
of forest might actually be divided into two spectrally
different segments which will result in a bimodal histo-
gram. Other difficulties might arise from situations where

the covariance matrices for some of the subclasses become
singular.

Another approach which completely transcends from dis-
crete training areas, is to use entire classification maps of
geometrically congruent scenes for calculating the class
statistics. This has been proposed elsewhere in the litera-
ture in the context of crisp classification [Quiel, 1986] as
well as fuzzy classification [Wang, 1990]. Using fuzzy
classification maps, this method employs fuzzy statistics:
pixel assigned to a class are not counted as 1, instead the
count is a function of the membership. So, in order to get
the class statistics for a supervised classification, the
source data of a newly acquired scene are processed with
the valid fuzzy classification map; which is stored in the
database.

Certainly, these fuzzy class statistics are not as precise as
those that could be obtained by interactively defining
training areas. Therefore, I suggest an iterative classifica-
tion process. As a first step after having calculated the
fuzzy class statistics, a first fuzzy classification should be
performed. The result of this classification, a first fuzzy
classification map, should be used for a kind of automatic
plausibility step. For this purpose, a fuzzy intersection of
the resultant classification map and the contents of the
database should be performed. (A fuzzy intersection may
be defined as taking the minimum of the memberships of
corresponding classes; however a multitude of different,
more general functions may be used [Klir and Folger,
1988] [Schumacher, 1991]). In a second calculation of the
fuzzy class statistics, the resultant classification map of
this intersection process is used (instead of the database
contents).

The reasoning behind performing this intersection step is
as follows. As an example, we may think of the water
surface of a lake which varies over time.

* Suppose, the real surface as presented in the new scene
is smaller than nominal. In this case, the fuzzy statistics
is distorted by pixel from the surroundings of the lake.
The degree of this distortion depends on the relative size
of the difference between real and nominal size of the
water area.

Two possibilities arise:

1) the difference is small, so the distortion may be such
that the resulting statistics are still unimodal, however
with somewhat different means and covariances. Some
of the real water surface is classified more or less
correctly, with a possibly large number of water pixels
either unclassified or assigned to a false class. Perform-
ing the intersection with the nominal water surface, we
obtain only correct water pixels, which will build the
basis for the second fuzzy statistics.
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2) the difference is large, so the statistics may become
multi-modal. Here, things are a bit more complicated.
Here the problem will be that not only the difference
area between real and nominal water surface will be
classified as water; this may lead to misclassification
outside the nominal lake, too. The solution must be
searched for in some kind of heuristic reasoning: in
case of multi-modal distributions, the resulting sets of
classified pixels has to be analyzed for each subclass
separately. For each subclass, the degree of correlation
between the nominal class area and the resultant area
of this subclass should be determined. For correctly
classified water pixels, almost all of these should be
located within the nominal water area. For falsely
classified pixels, a more or less high percentage of
these can be expected to be located (otherwise we do
not have a problem as almost all classified pixels are
within the nominal area).

* Now suppose, the real surface as presented in the new
scene is larger than nominal. In this case, the fuzzy
statistics is based solely on the real water pixels. There-
fore, the water pixels in the new scene should be cor-
rectly identified as such.

Classification Method

The requirements for a classification method are:

« the classification method must produce a fuzzy classifi-
cation map;

* the classification method must be detected and corrected
(by discarding some features);

 as a consequence of this, the algorithm must be able to
operate in feature spaces of different dimension which
requires a normalization of distances measures.

These functional requirements are fulfilled by the fuzzy
classification methods in UPSTAIRS. As these methods
allow for a variable number of features for individual
classes, I suggest to take advantage of this fact: it is
probably a good idea to select for each class a fixed set of
features from the original spectral channels, ratios, etc.

After the iterated classifications, two steps should follow:

- detection and resolution of mixed pixels;

- a context-sensitive re-classification; the estimation of
the fuzzy measures used in this algorithm could be
learned from the series of classification performed so
far, not from the actual scene alone.

Both steps should hopefully improve the quality of the

classification results of the new scene before these results

are integrated in the database.

Overview

An overview of the complete automatic classification
process is given in figure 2. The last step, the integration
process, is discussed briefly in the next section.

4.6 Integration of Newly Acquired Data

The integration of the new data in the database is a difficult

process. The inherent problem is that

1) the nominal (stored) classification data have intrinsic
weight because these data rely in general upon a more
or less long sequence of classifications, so misclassifi-
cation should not be of much importance;

2) the real (new) classification data are the most recent
data, so differences to the nominal data might result
from changes in ground truth; however, as the new data
have been automatically classified, differences might
in fact be mis-classifications.

If we go back for a moment to the conventional approach
to a land-use database where we do not have a degree of
confidence associated with each class assignment, the
only practical solution probably would be to give prece-
dence to the new data over the stored once, i.c. the new
classification just supersede the old ones.

Within this fuzzy framework, we certainly can do better.
Essentially, there are two approaches: a purely technical
one and a method based on rules.

Technical Approach

A solution which immediately comes to mind, is to per-
form a fuzzy union of the stored data and the new data. In
this way, in the resultant classification map for each class
and each pixel the maximum of both degree of member-
ships is taken. Again, fuzzy union may be implemented
somewhat difvferent]y [Klir and Folger, 1988]
[Schumacher, 1991], allowing for class-specific weight
assigned to the different operands (memberships).

This method has two short-comings:

» memberships of the stored classification map are con-
tinually increasing towards 1 and never decrease

* in case there is a real change in landuse, this should be
reflected in the classification map by setting the former
class membership to O.
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Fig. 2 - Automatic classification for updating thematic database.
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Set of Rules

An improvement of the integration process should be ob-
tained by applying a set of rules for resolving non-compat-
ible class assignments. An example of such a rule could be.
If the old data is assigned one of the classes [agricultural,
forest, ...] with high membership and the new data is
assigned one of the classes [street, residential areas, ...]
with high membership, assign the new class and discard
the old one.

So, the integration of this classified data should be managed
by some kind of expert system. The only data the expert
system has access to, is a vector of memberships to a fixed
set of classes for the data stored in the database (nominal,
historical data) and for new, more recent data. The reasoning
may, of course, involve arbitrary neighborhoods of a pixel.

SUMMARY AND CONCLUSION

The architecture of a thematic database built upon the
tools and methods available in UPSTAIRS was proposed.
It was suggested to perform the geometrical process of
matching newly acquired scenes to geocoded data by
estimating vectors of displacement in a large number of
equi-distant grid points. The correlation process to be
applied should give - in addition to the displacements - a
measure of confidence in the accuracy and authenticity of
the homologous points. This measure of confidence can
be translated into a coefficient of a cost function for an
approximation algorithm suggested by Grimson [Grim-
son, 1981]. This approximation process gives the best
estimate of the displacements in the grid points resolving
a trade-off between the original estimates (null values of
displacement) and the “smoothness” of the global solution
which is a parameter of the process.

For the classification of newly acquired scenes on a con-
tinuous basis, an automatic process is suggested. The
supervised classification methods in UPSTAIRS provide
a strong foundation for such a system. A method for
training the classifiers on the basis of fuzzy statistics based
on former classification results rather than individual
training areas is proposed. The salient features of the
classification subsystem are:

« fast, robust implementation of the maximum likelihood
method, also applicable in case of a large number of
features

« fuzzy set paradigm for expressing vagueness of classifi-
cations

« different sets of features on a per-class basis are possible

« different types of classifiers may be combined within a
single classification run

* partial solution to the detection and resolution of mixed
pixels

* new approach to multi-temporal classifications by com-
bining separate classification results by means of fuzzy
set operations

* new context-sensitive fuzzy reclassification method
where context information is estimated on the basis of a
fuzzy per- pixel classification, considers spectral and
context memberships as two sources of information, and
tries to combine both sources to one final classification
result.

All classification methods in upstairs are operating on a
per-pixel basis or are based on the smallest neighborhood
context only. For an operational thematic database, it
might well turn out that such a low-level approach is not
sufficient. In particular, no ancillary information is inte-
grated in the classification process. Certainly, there are
very difficult problem areas (like cyclical changes in ag-
ricultural land-use) which probably require a complemen-
tary knowledge-based approach [Middelkoop and
Janssen, 1991]. Also, in order to resolve discrepancies
between old (historical) and new (actual) land-use classi-
fication, the fuzzy set paradigm is of great help; however,
a considerable improvement in this decision process
(changes in ground truth versus mis-classifications) can
be expected by applying a set of rules for integrating new
classification results in the database. So, a logical con-
sequence of this would be the development of an expert
system which is built on top of this low-level classification
system suggested.

REFERENCES

BMBau. Auswertung von Satellitenaufnahmen zur Gewinnung
von Flichennutzungsdaten. Technical report, Bundesministerium
fiir Raumordnung, Bauwesen und Stadtebau, 1979.

W.E.L. Grimson. From Images to Surfaces - A Computational
Study of the Human Early Visual System. MIT Press, 1981.

Robert A. Hummel and Steven W. Zucker. On the Foundations
of Relaxations Labeling Processes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 5(3): 267-287, May 1983.

George J. Klir and Tina A. Folger. Fuzzy Sets, Uncertainty, and
Information. Prentice Hall, 1988.

Hans Middelkoop and Lucas L.F. Janssen. Implementation of
Temporal Relationships in Knowledge-Based Classification of
Satellite Images. Photogrammetric Engineering & Remote
Sensing, 57(6): 937-945, 1991.

Friedrich Quiel. Landnutzungskartierung mit LANDSAT- Daten.
Technical Report 17, Bundesforschungsanstalt fiir Landeskunde
und Raumordnung, 1986.



Schumaker: UPSTAIRS as a Framework for Implementing a Geocoded Thematic Database 13

J.A.Richards. Remote Sensing Digital Image Analysis. Springer-
Verlag, 1986.

Helmut Schumacher. Untersuchungen zur iiberwachten Klassi-
fikation von Fernerkundungsaufnahmen. Technical Report 169,
Fachrichtung Vermessungswesen der Universitit Hannover,
1991.

G. Schreier, W. Knoepfle, H. Craubner and H. Schumacher. A
Large Scale Data Base for Digital Elevation Models. In ISPRS
Commission IV Tsukuba, 1990.

G. Schreier, D. Kosmann and A. Roth. Design Aspect and Im-
plementation of a System for Geocoding Satellite SAR Images.
ISPRS Journal of Photogrammetry and Remote Sensing, 45: 1-16,
1990.

G. Schreier, D. Kosmann and H. Schumaker. Data Bases for
Operational SAR geocoding Systems. In ISPRS Kyoto, 1988.

Philip H. Swain. Baynesian Classification in a Time- varying
Environment. Technical Report 030178, LARS Purdue Univer-
sity, 1978.

Fangju Wang. Fuzzy Supervised Classification of Remote
Sensing Images. IEEE Transactions on Geoscience and Remote
Sensing, 28(2):194-201, March 1990.

L.A. Zadeh. Fuzzy Sets and Their Application to Pattern Classi-
fication and Clustering Analysis. In J.van Ryzin, editor, Classifi-
cation and Clustering. Academic Press, 1977.



	1.3_01_001
	1.3_01_002
	1.3_01_003
	1.3_01_004
	1.3_01_005
	1.3_01_006
	1.3_01_007
	1.3_01_008
	1.3_01_009
	1.3_01_010
	1.3_01_011
	1.3_01_012
	1.3_01_013

