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ABSTRACT

In a Geographic Information System (GIS), objects of
interest are stored by their geometry and attribute values.
The type of objects differs from user to user context.
Different geometric representations can be used to de-
scribe the geometry: vector, raster and quadtree. Inte-
grated processing of different geometric represcntations
can be realized by means of an object oriented link to the
different representations. Objects are more or less dy-
namic in time and space. The data in a GIS, therefore, need
periodic updating.

Different types of uncertainty are related to the data in a
GIS. The uncertainties involved can be described by the
three components in the decision: xe S.

Remote Sensing (RS) can be considered as a data acquisi
tion technique for updating the object information in a
GIS. The spectral reflectances, as determined with remote
sensing, can be used to check and update both thematic an
geometric descriptions of objects that are stored in a GIS.
RS data are not object oriented; RS results in a Digital
Number per pixel. Automatic interpretation of RS is there-
fore limited and yields data with some level of uncertainty.
If RS is used for the updating of GIS, the available object
information in the GIS can be used to improve the cer-
teinty of decisions being made in the processing of the RS
data. This approach can be called an integrated approach.
Some examples are given to illustrate the effect of an
integrated approach.

INTRODUCTION

Geographic Information Systems (GIS) are more and
more being used for the storage and analysis of geographic
data. The user context of a GIS determines the objects of
interest. At the Wageningen Agricultural University and

the Winand Staring Centre land cover and land use are of
great interest. In general, our objects of interest are agri-
cultural fields, forested and (semi-) natural areas. Storage
and updating of these objects is very relevant.

Remote Sensing (RS) seems to be a promising technique
for (semi-) automatic updating of geographic databases,
especially in the field of agriculture and forestry. RS data
are considered to be in digital format; this could be satel-
lite or airplane scanner data or scanned aerial photographs.
The automatic processing of RS images differs very from
the visual (interactive) interpretation of photographlike
products because of the little number of interpretation
elements that are (can be) taken into account. Automatic
interpretation of RS images could be improved by includ-
ing existing information on the objects of interest.

In the recent history of the so called ‘integration of GIS
and RS’ much attention is given to graphical integration
techniques: vector on raster superimposition with a shared
coordinate system. Further integration comprises vector to
raster and raster to vector conversion. We seek integration
on database level with the aim to reduce uncertainty in the
RS derived information. Therefore the object definition
and description in a GIS, associated uncertainty and the
characteristics of RS data will be described. In the end
three examples will be given to illustrate the success of an
integrated approach.

1. TERRAIN OBJECTS IN GIS

The description of terrain objects in GIS has three com-
ponents. An object is represented by an identifier linked
up with thematic data and geometric data as in Fig. 1. The
objects are conceptual entities, that are meaningful in
some context. Within such a context the semantics of the
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objects description will be defined. This concerns in
general the object classification structure, i.e. set of (mutu-
ally exclusive) object classes.

thematic
data

object
identifier

geometric
data

Fig. I - Object representation in GIS.

Fig. 2a shows that a list of attributes is connected to each
class. The individual classes are identified by a label or a
class name. The attribute list of a class gives the names of
the attributes. The arrow in Fig. 2a indicates that in general
many terrain objects belong to one class. They all have a
common attribute structure, which they inherit from the
class. This means that each object of the class has a list
containing a value for each attribute of class attribute list.
These values are taken from the value domains of in-
dividual attributes (Fig. 2b).

class attribute list

!

object F—3>

attribute values list

Fig. 2a - Class structure of objects.

attribute name

Fig. 2b - Relation: attribute - domain value.

The river Rhine is a terrain feature which belongs to the
class of rivers. Relevant attributes are e.g. depth, width,
maximum tonnage of a ship, maximum traffic intensity
and water velocity of the current. The river Rhone can be
described by the same attributes, only the values will
differ.

Another semantic aspect is the geometric description of
the objects. For each object a decision should be made
whether it will be treated as an area object, a line object
or a point object. This decision depends on the role the
objects play in the analysis of spatial object relationships.
A town may be treated as an area object in one context and
as a point object in another. Similarly a road may be a line
object in one context and an area object in another.

The terrain objects should be represented in some
geometric structure such as the vector (or polygon) struc-
ture, the raster structure or a quadtree structure. A decision
should be made how the three different geometric object
types should be represented in these structures. See
[Molenaar, 1989], [Molenaar, 1991].

For several reasons one might like to combine raster and
vector data. This can be done according to two different
strategies: the position oriented approach and the object
oriented approach. The position oriented approach is
rather simple: the data in the raster and the vector structure
are combined through their common position.

This is done by transformation of the vector data into
raster data with the same grid geometry as the original
raster. Then the old raster and the new raster are overlayed
so that the thematic data can be combined.

The object oriented approach requires that the terrain
objects represented in the vector map are also represented
in the raster, or quadtree map. The raster data can be
transformed in the vector structure or both the vector and
the raster structure are maintained and they are linked
through the common object identifiers. For this last solu-
tion Fig. 2 should be modified (see Fig. 3).

thematic
data

object
identifier

vector
data
(arcs, nodes)

Fig. 3 - Data structure for the combination of vector and raster
data.
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Hence there are links between object identifiers and the
raster elements for the raster representation and between
the object identifiers and the geometric elements for the
vector representation.

If we only consider area object, also for quadtree data, then
Fig. 3 can be given in some more detail (see Fig. 4).

Fig. 4 - Linking object identifiers for different geometric repre-
sentation.

We see that the object identifiers play a central role in the
data structure. They can be linked to the different
geometric representations.

2. OBJECT DYNAMICS AND REMOTE SENSING

Objects may change in time. The object dynamics can
affect the object status in several ways.

Firstly the thematic data may change. In the simplest case
this affects only some of the attribute values of an object,
e.g. the waterdepth of a river changes, or the maximum
traffic density. A more drastic change is when an object
changes object class, e.g. the land use class of a field or
land parcel changes from farmland to built-up area. This
means that the object gets another attribute structure. All
new attributes should be evaluated for the object.

Secondly the geomeric aspects of an object may change.
This may also have several effects. It may be that an object
only gets a new position, like a lamppost being put at
another point, or like a a road being shifted. Another
posibility is that an object changes shape and size like a
land parcel from which a part has been split off. A third
possibility is that the topological relationships among
objects change, as in the case where cities grow so that
they fill up the open spaces between them, or like a road
being extended, so that it connects more districts or cities.

Thirdly objects may change their aggregation structure.
This is the case when a farm lot is split-up in different

parcels with different crop types. It may also be that
several parcels are combined into one homogeneous field
or that the parcel structure of the lot changes into a new
set of parcels. Such dynamic behaviour occurs in farm
districts if several crops are grown in one lot and if the
crops rotate from year to year.

Remote sensing is in many cases a good tool for monitor-
ing the object dynamics. To make optimal use of this tool
the data contained in an RS image should be linked
directly to the object information stored in a GIS. The
problem is that RS data are primarily position oriented
because of the image raster structure. This position
oriented structure should be converted into an object
oriented structure. That means that we have to identify the
pixels or raster elements that are related to the terrain
objects stored in a GIS. With this link Fig. 4 can be
modified so that RS data can be introduced as in Fig. 5.

b e = i 2 |
vector representation

raster representation

Fig. 5 - The link between object and remote sensing data.

This link can be used in two ways: Firstly the spectral date
and the classification results can be linked directly to the
terrain objects instead of the individual pixels. Secondly,
apriori object information can be used to improve the
quality of the information extraction from the RS data. The
advantage of such an approach will be clear if we realise
that object definitions and descriptions are always made
within a certain users context. The object dynamics should
also be understood within such a context. That is why the
extraction of object information from RS data is seldom
straight forward. E.g. different object classes often have
similar or overlapping spectral signatures, additional ob-
ject information may then be helpful to derive the object
class from the spectral data or to derive correct values for
some of the thematic attributes of the objects. Similarly
object information may be helpful to detect changes in
object geometry from RS data. Before explaining some
strategies how to do that, we will first describe the differ-
ent types of uncertainty that occur in RS data processing.
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3. UNCERTAINTY

Information extracting from RS data always implies un-
certainty, i.e. one can never be sure whether the results of
the process are correct. There are several reasons for
uncertainty. We will consider them in some more detail
here.

Uncertainty is related to decisions, such as: xeS, i.e.
element x belongs to (sub)set S. This implies the risk that
wrong decisions are made, with the consequence inade-
quate action follows.

This of course should be avoided, or at least the risk should
be brought down to an acceptable level. Therefore we
should understand the causes of uncertainty and also we
should understand which are the different kinds of uncer-
tainty. The formula “xe S” has three components, uncer-
tainty can be related to each one of them [Kliv and Folger,
1988].

Firstly the definition of a subset S may be fuzzy, in GIS
this might mean that the criteria for assigning terrain
objects to a certain class might be fuzzy: e.g. the definition
of nature districts is not always clear. Does it mean that
people do not interfere with the development of flora and
fauna? Then Western Europa has no nature districts. If it
means that there is only a limited interference of people,
then how little should that be. No sharp criteria can be
formulated. The theory of fuzzy subsets gives mathemati-
cal rules for handling this type of uncertainty. Fuzzy
subsets are distinct from classical “crisp” subsets in the
sense that for crisp subsets the membership function
Ms(x) =1 xe S (i.e. x belongs to S) or

Ms(x) =0 x¢ S (i.e. x does not belong to S)

For fuzzy subsets 0 < Ms(x) < 1, hence x may belong a
little bit to S. The algebraic rules formulated in this theory
are mainly of a qualitative nature, because in many prac-
tical situations it is difficult to evaluate Ms(x).

Secondly the definition of x may be uncertain. In GIS x
stands for a terrain object; for which the geometry and the
attribute values should be evaluated. In many cases this
will be done through measuring procedures or through the
processing of measuring data. Measuring operations intro-
duce in general stochastic components in the observed
data. Those stochastic components propagate through the
processing steps applied to these data. The uncertainty
introduced here, can then be dealt with mathematically by
means of stochastic models. This means that the uncer-
tainty can often be expressed in terms of variances and
probabilities.

In remote sensing images this type of uncertainty may
refer to the spatial end spectral resolution of the sensors,

to the point positions and for the translation of digital
numbers into intensity values or even reflectances in the
different spectral bands.

Thirdly there may be no sufficient evidence to assign an
element x to a subset S. This situation is different from the
first case, because the criterion to assign elements to
subset S might be crisp. The problem is now that it is not
clear whether a particular element x fullfills the criterion
or not. This case is well known in photo interpretation and
remote sensing image classification. If such a classifica-
tion is made to determine land cover of an area, then the
land cover classes might be well defined. Still the spectral
information in the image might not give sufficient evi-
dence to assign the pixels with Certainty to those classes.
Similarly photo interpretation might in some cases not
give enough evidence whether a particular building is a
house or an office. In such situations it is this third type of
uncertainty that can be reduced by using apiori object
information for RS data processing. The lack of evidence
in the RS data for deciding what is the status of a particular
terrain object can often be compensated by the informa-
tion stored in a GIS. The next chapter will give some
strategies.

The subset S is crisp and the element x has been deter-
mined accurately, but still we are not sure whether we
should decide xS or xS. The mathematical rules for hand-
ling this type of uncertainty are given by the theory of
evidence or the theory of fuzzy measures [Kliv and Folger,
1988].

4. INTEGRATED PROCESSING OF GIS AND RS

4.1 Introduction

Remote sensing is a data acquisition technique. With
remote sensing the relative amount of reflected electro-
magnetic energy of the earth’ surface can be determined.
Typically, these measurements are stored for every picture
element (pixel) in Digital Numbers (DN). The images,
resulting from remote sensing, can be characterized by the
image space and the feature space.

The position for a pixel is determined by a row- and
column-index (i,j) in the image space (Fig. 6). There are
no explicit spatial relationships between the pixels in
raster.

The (relative) spectral reflectance can be represented in
the feature space (Fig. 7). Pixels with similar spectral
behaviour can be found in the same region of a feature
space.
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Fig. 7 - Representation of the feature space.

Remote sensing images are widely applied for land cover
classification. The results, however, do not always meet
the user’s expectations. Expectations that are partly based
on the possibilities and results of (visual) photo-interpreta-
tion. In the visual interpretation a large number of inter-
pretation elements are used: shape, tint, pattern, site,
resolution, size, shadow, texture and association [Lille-
sand and Kiefer, 1987]. In most image interpretation algo-
rithms the only interpretation element being used is
spectral reflectance (tint).

The shortcomings of remote sensing imagery for land
cover classification can be explained from the characteris-
tics of the imagery. In the image space, no spatial relation-
ships are defined. Therefore, most processing algorithms
are per pixel and feature based. Furthermore, because of
a limited spectral resolution only a limited number of

spectral classes can be distinguished. In order to perform
a classification, the user defines his land cover and/or land
use classes of interest. Depending on the defined classes,
a limited geometric resolution results in so called mixed
pixels that cannot be related to a single defined spectral
class.

In practice, most users are interested in land use classes:
functional classes. Sometimes the relationship between
spectral classes and land use classes is straight forward. In
a lot of other cases it is simply not possible to derive land
use classes from remotely sensed images without the use
of ancillary data.

Concerning RS-derived geometric information the same
problems show up. There is a limited geometric resolution
and a limited number of grey values. Spatial relationships
are not explicit and have to be derived from the image
itself. Purely image-based segmentations by means of
clustering or edge-detection seldom produce results that
can meet a user’s demand.

Due to the mentioned limitations of remote sensing a
certain level of (un-) certainty is related to information that
is extracted from the images. The available object infor-
mation available in a GIS, together with knowledge on the
relationships of these objects and spectral data can be used
to overcome some of the limitations. An integrated ap-
proach, therefore, results in more certainty for the RS
derived information. Some examples are described in the
following sections.

4.2 Object-classification

In a conventional supervised classification procedure the
classes of interest are defined by the user. In an object-
classification also the objects of interest are defined by
their geometry in a GIS. For every object the land cover
class can be derived from the remote sensing image by
means of the object-classification [Janssen, Jaarsma and
E.T.M. van der Linden, 1990], [Janssen and J.D. van
Amsterdam, 1991].

In the applications of the Wageningen Agricultural Uni-
versity, typically, the objects of interest are agricultural
fields. In a field (object) one type of land cover is ex-
pected. The geometry of the object and the assumption that
only one land cover type is expected are exploited in the
object-classification. Because the object geometry defines
the spatial relationship between a number of pixels the
results from an object-classification are more reliable than
the results from a per pixel classification. Furthermore, the
object geometry enables identification of the boundary
pixels. Boundary pixels are often mixed pixels and diffi-
cult to classify. By using a technique as polygon shrinking
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Fig. 8 - Flow chart of the pre-object classification.

the boundary pixels can be excluded in the classification
of the object.

In most situations, the geometric structure of the remote
sensing data are raster based while the object geometry is
vector based. The raster and vector data can be combined
by a position or object oriented approach [Molenaar and
Fritsch, 1990]. In the position oriented approach the object
geometry is converted into a raster file and the object-
classification is based on an overlay operation of two
raster files. In an object oriented approach both raster and
vector structure are maintained. In the processing the
raster elements that are positioned within an object are
identified.

The object classification can be performed at two mo-
ments in the classification procedure: pre-object classifi-
cation and post-object classification:

(i) In the pre-object classification an average reflectance
value (in digital numbers) is calculated per object. This
mean reflectance value is classified in a maximum likeli-
hood classification. The found label is assigned to the
object (Fig. 8).

(ii) In the post-object classification first a per pixel maxi-
mum likelihood classification is performed. Sub-
sequently, a frequency table of the labels of the pixels

Object

Imi Traini
boundaries [ d:!gae / { rg.;r;;wg /

Calculate mean
Digital Number
per object

Mean
Digital Number
per object

—

Maximum
likelihood
classification

[

Label
per object

Fig. 9 - Flow chart of the post-object classification.

within the object is established; the label with the largest
frequency is assigned to the object (Fig. 9).

Both pre- and post-object classification were tested for a
number of different areas in The Netherlands. Some re-
sults of the post-object classification are described in the
following.

A per pixel and object classification were performed with
a Landsat Thematic Mapper image (bands 3,4,5) for 7 to
10 different land cover classes depending on the area
being classified. The results of a per pixel classification
were validated by means of a confusion matrix with refer-
ence data resulting in an overall accuracy. The results of
the object classification were validated by means of com-
parison of true- and RS-derived label in the GIS. From this
comparison also an overall accuracy was determined.

The per pixel classification yielded overall accuracies of
55% to 76%, the object-classification yielded overall ac-
curacies of 73% to 96%. In general, the classification
accuracy improved with approximately 20%. The classi-
fication improvement can largely be explained by the
definition of spatial context and the exclusion of boundary
pixels provided by the object geometry. Besides the im-
provement in classification acccuracy, the object classifi-
cation resulted in a label per object and not per pixel.
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Fig. 10 - Flow chart of image classification with use of information on preceding land cover and crop relation schemes.

4.3 Use of knowledge on preceding land cover and
crop rotations

Thematic object data were used to improve classification
accuracy by definition of (object) specific a-priori prob-
abilities. This classification strategy was elaborated by
[Janssen and Middelkoop, 1991] for an agricultural area
in The Netherlands.

In every agricultural region, a limited number of crop
rotation schemes are applied for the cultivation of arable
land. The information that can be exploited from the
rotations schemes is that given a certain crop type at t-1
(one year before acquisition year of RS image), a limited
number of crops can be expected at t for the same location.
This information was added to the (spectral) information
from a remote sensing image to improve the classification
accuracy.

The flow scheme of this classification is given in Figure
10. The crop rotation schemes are formalized by means of
a so called transition matrix. This matrix can be derived
by multitemporal analysis in a GIS or by interviewing
agricultural experts. In the transition matrix very specific
a-priori probabilities are stored: P(cropilcropj,-1). These

a-priori probabilities were combined with the spectral
derived information by means of Bayes Rule. The condi-
tion to perform this classification is that the crop type at
t-1 available.

Unfortunately, the object (field) boundaries were located
at different positions in subsequent years. Therefore this
classification was realized by a pixel based operation.

To assess the effect of the added information a Thematic
Mapper image (bands 3,4,5) was classified for the relevant
crops: grass, cereals, potatoes, sugar beets, beans, peas and
onions. The classification results were validated by means
of a confusion matrix that was based on a cross tabulation
of classified and reference data. The overall accuracies of
a classification with and without the a-priori probabilities
based on preceding land cover and knowledge on crop
rotations were 82% and 76% respectively.

4.4 GIS- and KB-supported image segmentation
and classification

In this chapter a strategy is decribed to derive accurate
land cover data per field for the polder areas in The
Netherlands [Janssen and Verwaal].
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Fig. 11 - Flow chart of GIS and KB based image segmentation and classification.

The polder areas in the Netherlands are characterized by
a subdivision in so called ‘lots’. One farmer owns one or
two lots. In general, the lots have a rectangular shape.
Every year a farmer subdivides a lot into several fields
(parcels) that are planted (seeded) with a certain crop. A
field is defined by having only one type of crop. In the
polder areas there are no mixed cultivations. The fields are
generally of rectangular shape.

In our terms, lots are aggregated objects with a fixed
geometry. The elementary objects are fields with one crop

type. .

The aims of the developed strategy is to determine
geometric and thematic aspects of the elementary objects
based on Thematic Mapper data.

Since the geometry of the lots is fixed, it is stored in a GIS.
The geometry of the elementary objects is derived by
means of a segmentation, the land cover type of every
object is derived by means of a classification. The three
main components of this strategy can be found in Fig. 11.
(i) The first component is an edge detection by a Kirsch
filter. Edges with the largest magnitude and with a mini-
mal length are passed (in vector format) to the knowled-
ge-based (KB) construction of field boundaries.

(i) The KB-construction consists of a number of opera-
tions in which the edges are checked with a number of
conditions. Knowledge about straightness and
perpendicular intersections are used in the construction.
The resulting field boundaries consist of straight arcs that
(mostly) intersect perpendicular with the lot boundaries.

(iii) The derived fields are classified by means of an
(post-) object classification. The results of the object
classification can also be used to find large oversegmen-
tation errors. Oversegmentation means that too much
(elementary) objects were detected within the aggrated
objects. The single objects with the same thematic label
then can be merged. Undersegmentation should be solved
by complementary segmentation techniques as region
growing. Preliminary results of this strategy seem very
promising.

FINAL OBSERVATIONS

Object definitions are always made in a users context, this
implies that background knowledge should be available
when extracting object information from RS-data. This
can be realised partly by the integration of the object data
stored in GIS with RS-data. If the integration is only done
at a graphical level, i.e. through a graphical overlay then
it is the operator at the image processing system who sees
the relationships between the GIS-data and the RS-data.
He will use the information to steer the image analysis
process in an interactive way.

In this paper we proposed an alternative approach where
object information stored in a GIS is used to restructure
the RS-data so that the pixels are directly related to ob-
jects. In this way information about object geometry,
object history and object structure can be used to support
the image analysis process. Experiments showed that this
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information helps to improve the quality of the informa-
tion extraction from RS-data.

A prerequisite for this strategy is that object information
is given explicitely by a GIS, i.e. the data model should
support the explicite representation of terrain objects. The
link of object data with the raster structured RS images
requires in fact a system which can handle object repre-
sentations in both a vector and a raster format. The link
between the two representations will be made through
common object identifiers.

We saw that the link of object information to RS-data
reduced the uncertainty in RS information extraction. The
link does not inprove the accuracy of the original data,
neither does it make class definitions less fuzzy. It only
gives additional information where the RS-data give in-
sufficient evidence for drawing conclusions about object
class or structure, i.e. this link improves the evidence for
information extraction.

The methodology described here provides a good tool for
monitoring object dynamics. GIS provides a state descrip-
tion of terrain objects, RS can be used to check whether
this state has changed and how it has changed. Object
knowledge stored in GIS can be used to formulate hy-
potheses about the changes which might occur. RS can
then be used to verify these hypotheses.
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