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ABSTRACT

This paper deals with an iterative method for solving an
inverse electromagnetic scattering problem: the quantita-
tive reconstruction of complex permettivity distribution of
inhomogeneous 2D or 3D lossy dielectric objects from
measured scattered near field data.

Using an exact integral equation and the Moment method,
matrix equations are obtained for the forward scattering
problem. The inverse problem is solved by an iterative
procedure based on a Newton-Kantorovich method. The
solution has been constructed for different polarization
cases (2D-TM, 2D-TE and 3D) and in order to incorporate
multi-incidence configuration. A Tikhonov regularization
is applied on ill-conditioned matrices which have to be
inverted.

This iterative numerical solution provides quantitative
reconstruction of the complex permittivity profile even for
strong scatterers as encountered in biomedical applica-
tions.

Numerical result are presented showing the convergence
of solution and the influence of noise is also investigated
on 3D object in order to test the robustness of the algo-
rithm.

INTRODUCTION

This paper deals with an inverse scattering problem: the
reconstruction of complex permittivity of lossy dielectric
objects from scattered near-field measurements.

During the last decade, an increasing interest has been
devoted to the determination of the complex permittivity
profile of 2D or 3D objects from moment method solutions
of the integral equations (Hagmann et al., 1981), (Ghod-
gaonkar et al., 1983), (Johnson and Tracy, 1983), (Ney et
al. 1984), (Datta and Bandyopadhyay, 1986), (Guo and
Guo, 1987), (Caorsi et al., 1988 and 1990). At present,
they appear to be among the most promising approaches
for Microwave Imaging. Nevertheless the stability of such

approaches is very sensitive to the observation point loca-
tions and measurement accuracy due to the nature of the
inverse problem, which is in general strongly nonlinear
when quantitative imaging is requested, and ill-posed.
This involves, in general, the use of a regularization pro-
cedure. An iterative solution can have some important
advantages: effects of ill-conditioning can be significantly
reduced by enforcing the convergence with a priori infor-
mation.

The iterative numerical solution has been constructed in
order to incorporate multi-incidence configuration (the
object is successively illuminated by different incident
fields). Different codes involving the implementation of
forward and inverse problems for 2D and 3D cases have
been developed. Reconstruction in the presence of noise
is presented in order to test the robustness of the algorithm.

1. FORMULATION

Let an incident field with electric field E' illuminate an
inhomogeneous dielectric object of complex permittivity
e* (r) and arbitrary shape defining a volumic domain D
surrounded by a homogeneous medium of complex per-
mettivity €1*. The object being illuminated by a known
incident field, the scattered field E® is collected by M
detectors located around the object or in a defined region
close to the object. We use the Moment method applied to
an Electric Field Integral Equation (EFIE):

ES(r)=[] fD CH)E@) G ,r)dr (1)

The kernel or tensor Green’s function G (r, ') (for
2D-TM, 2D-TE and 3D cases) is defined as:

'G@r,r)=i/4Hj (ki |r-r'])  for 2D-TM case (2a)

G(r,r)=(I+1/kiV.V)i/4H) (ki |r-r'])
for 2D-TE case (2b)
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G(r,r)=I+1/ki V.V)exp (i ki | r-r' |)/(4 | r-r'|)
for 3D case (2¢)

(for a time dependance ine ™' ") where H¢" stands for the
Hankel function of zero order of the first kind and the
function C (r') represents the unknown contrast between
the object and the background medium:

C(r') = kovi (r') - ki (3)

In case of multiple incidence configuration, the object is
illuminated successively by N, different angles of inci-
dence.

The Moment method leads to the following matrix rela-
tion:

[E']1=[G][C][E] 4

where:

- [C] represents a dNxdN diagonal matrix whose elements
depend on the local permittivity contrast of the object.

- [G] represents a dMxdN matrix whose elements are
calculated from expression of the Green’s function.

- [E] represents a dN vector whose components are the
values of the total field at the sampling points.

- [E’] represents a dM vector whose components are the
scattered ficld at the collected points.

The former matrix relation (4) is extended to V scattered

fields E*® collected for V different angles of the incident

field. Following the itcrative method developed by (Joach-

imowicz et al., 1991), the variation AE® of E® (dimension

VM) induced by a small variation of A C is given by:

[AE’]=[D][AC] ®)

where [D] is a VdmxN matrix and [ A E° ] is a VdM vector.
The inversion of the ill-conditioned matrix [D] using a
Tikhonov regularization procedure (Tikhonov and Ar-
senine, 1977), provides the contrast error [ A C ] for up-
dating the initial guess:

[AC]=(D'D+aly ' D'[AE'] (6)

Starting from an initial guess of the permittivity distribu-
tion in the object, the computed scattered field E° is com-
pared to the measurement at each step of the iteration. The
iterative process is stopped when [ A E’ ] is close enough
to zero.

The domain of validity of this method is directly related
to the signal to noise ratio. Stability sensitivity is why the
use of an iterative scheme is important: effects of ill-con-
ditioning can be significantly reduced by enforcing the
convergence with a priori information (object external
shape, upper and lower bounds of complex permittivity,
presence of different media,...).

2. RESULTS

The method is illustrated with various numerical simula-
tions of practical interest performed on dissipative inho-
mogeneous dielectric objects (biological phantoms,
human arm,...) in view of biomedical applications of mi-
crowave imaging. The influecnce of noise has also been
studied in order to test the robustness of the algorithm. The
numerical simulations have been performed on a VAX
8300 computer. The objects have dielectric properties
close to those of biological tissues (bone, muscle, fat) and
are immersed in water, as it is usual for such applications.
At 3 GHz the different chosen relative complex permit-
tivities are ¢ = (8., 1.2) for bone, ¢ = (46., 12) for muscle
(Joachimowicz et al., 1991) and ¢; = (76., 14.4) for water.

D WATER % fat ’ D muscle - bone

Fig. 1 - Numerical model of a human arm cross-section.

One considers a human arm cross-section as shown in
Fig.1. The arm section is enclosed inside a rectangular grid
which is divided into 221 0.43A-sided square cells. The
number of TM-polarized plane waves used is 32. For each
incident plane wave, the scattered field is measured with
32 receivers located on a circle of radius SA. The initial
guess corresponds to a rectangular grid composed of ho-
mogeneous muscle. Fig. 2a and 2b show the convergence
of the reconstruction after 14 iterations on the complex
permittivity (real and imaginary part, respectively) when
a piece of bone is introduced in the initial guess. As can
be seen, the convergence is achieved in a complicated
configuration. Moreover, similar results have been ob-
tained in the TE case (Joachimowicz et al., 1991) which
is a more difficult case than the TM one according to the
vectorial aspect of the scattering problem.
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Fig. 2a - Reconstruction of the real part of the complex permittivity distribution at 3 GHz with 32 plane waves in the TM polarization
case. Reconstructed image (left) and cross cuts along the profile AA’ (right).
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Fig. 2b - Reconstruction of the imaginary part of the complex permittivity distribution at 3 GHz with 32 plane waves in the TM
polarization case. Reconstructed image (left) and cross cuts along the profile AA’ (right).



Joachimowicz et al.: Microwave Imaging: an Iter. Num. Sol.

33

The relative mean square error ERR. of the reconstructed
permittivity profile id defined as:
1
N N 2
ERRc=| Y [Acc (@) /Y [C @) @)
i=1

i=1

where i, C and A cx denote, respectively, the number of the
cell, the exact value of the contrast and the difference
between the reconstructed and the exact value at the k-th
step.

Figura 3 illustrates the effect of a priori knowledge on the
convergence rate. It appears that CPU time can twice be
reduced by choosing an appropriate initial guess closer to
the real configuration.
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Fig. 3 - Effect of a priori information on the convergence of ERR
in the TM case; configuration n° 1: the initial guess is a piece of
bone surrounded by muscle; configuration n° 2: the initial guess
with the piece of bone and external contour.

According to these results, the spatial iterative technique
presented here provides more accurate and useful recon-
struction as well as more flexibility in considering differ-
ent experimental arrangements, arbitrary polarization case
and a priori information. Such performance partly results
in an incrase of the computation time.

For 3D reconstruction, Figura 4 shows the geometry of the
problem and the related 3D representation used to depict
the results. A dielectric cube divided into 27 cells, whose
side is equal to (A) (wavelength in the free space) has been
investigated. In this example, the cubic volume contains
an inhomogeneity (one cell) of complex permittivity
gob;” = (3., 0.). The cube is illuminated by 32 plane waves
and 12 receivers are located on 4 parallel lines located on
each side of the dielectric object, at (A) from the center
(planar receiver geometry). The distance between two
receivers on each line is equal to A/3.
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Fig. 4 - The three-layered investigation domain and its 3D rep-
resentation.

The noise effect has been studied by adding a random
measurement error, characterized by a uniform distribu-
tion with a maximum precent magnitude w. Fig.13 a, b, ¢
respectively show the initial guess (a free space cube) and
the results obtained after 3 iterations, for w=5 and w=20.
As we can see, the peak distinctly appears, for both cases.

CONCLUSION

A numerical solution for solving microwave imaging
problems has been proposed, for the complex permittivity
reconstruction of inhomogeneous dielectric objects from
near-field measurements. 2D-TM as well as 2D-TE and
3D cases have been investigated and carried out.

The spatial technique presented here provides quantitative
imaging even with strong diffraction effects. Con-
sequently, this method seems to offer more flexibility in
considering a priori information, different polarization
cases and multi-incidence configuration.

The influence of noise has also been studied in order to
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(c) §

Fig. 5 - Representation of the amplitude of the complex permit-
tivity. a) initial profile, b) reconstruction with w=5, c) reconstruc-
tion with w=20.

test the robustness of the algorithm and the solution seems
to be relatively robust in terms of signal to noise ratio. The
method of Generalized Cross Validation seems to be a
good attempt for choosing the regularization parameter
specially with noisy data (Franchois and Pichot, 1992).
As a result of the possibility of including in the iterative
procedure, multiple view configuration and a priori infor-
mation, this technique appears a promising attempt to
overcome the limitations of conventional diffraction ef-
fects.

First encouraging reconstruction have been obtained using
real experimental data (Joachimowicz and Pichot, 1992).
This removes the suspicion evoked by using a similar
method (method of moments) for the forward problem and
the inverse method in the numerical simulations presented
here.
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