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ABSTRACT

In this paper an overview of the mathematical foundations
and boundary element formulation of the problem of tran-
sient electromagnetic scattering from conducting bodies
is given. Starting from Maxwell’s equations the basic
integral cquations are derived by applying Green’s
theorem for vector variables and the definition of the
appropriate Green’s function. In order to apply the BEM
the discretization of the boundary into boundary elements
is discussed. The problems arising by handling objects
with edges or vertices are dealt with. Some results show
the applicability of the method for three-dimensional tran-
sient scattering problems since the method exhibits
robustness against late-time instabilities.

INTRODUCTION

A topic of some concern in target identification and elc-
tromagnetic compatibility is the interaction of electromag-
netic pulses with conducting bodies. The increased use of
wideband radar facilities has brought a demand for com-
puter techniques which are capable of predicting some of
the target’s electromagnetic features.

An electromagnetic scattering problem in general is de-
fined by a set of coupled partial differential equations and
appropriate boundary and initial conditions. By defining
a Green’s function which satisfies the differential equation
and the boundary conditions for a point source, the solu-
tion of the problem can be expressed as an integral over
the known source function multiplied by Green’s function.
The differential equation can be transformed into an inte-
gral equation which has certain advantages in the solution
of open boundary problems. The main benefits are that
Green’s function implicitly fulfills the radiation condition
and so there is no need for an outer boundary or the use of
an absorbing boundary condition. The discretization effort
can be reduced from the modelization of the domain to the
modelization of the surface under certain conditions

(vanishing initial conditions, linear materials, ...). The
resulting system of linear equations is therefore smaller as
the system of a finite difference or finite element method.
However, it is fully populated with respect to the retarda-
tion of the electromagnetic signals.

The integral methods used for scattering applications can
be subdivided into frequency-domain methods and time-
domain methods. The first of these involves the computa-
tion of the frequency-domain response of the structure
which is subsequently Fourier transformed to yield the
desired time-domain response.

The latter one, which will be employed in this paper,
solves the problem in the time-domain by a time-stepping
method with or without a matrix inversion algorithm,
depending on the representation of the solution on the
surface.

In the subscquent sections, we want to show how it is
possible to expand the well known method of boundary
element discretization (Brebbia, 1980) into the region of
transient clectromagnetic scattering problems. The new
feature of the presented work is the application of semi-
discontinuous boundary elements (Ingber, Ott, 1991) in
the time-domain and the possibility of obtaining a stable
solution via a matrix inversion technique (for stability see
e.g. (Rynne, 1985)).

1. MATHEMATICAL FOUNDATIONS
1.1 The Magnetic Field Integral Equation (MFIE)

We shall restrict ourselves to the simplest case which is a
conducting body supporting induced currents and charges
only on its surface. For smooth conductors, the Magnetic
Field Integral Equation (MFIE) (9) is employed since the
geometrical factors often tend to make the contribution
from the integral small compared to the contribution of the
incident field. Fig. 1 shows the geometry which will be
considered in the subsequent sections. Ju and J,, are u- and
v-componentes of the surface current density supported by
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a perfect conducting object. r and r’ are the co-ordinates
of the observation point and of the source point respec-
tively. The boundary of the conducting region W is de-
noted by G and dG is a differential surface element.

Fig. 1 - Geometry of a scatterer with differential surface element
dl.

A scattering problem can be described by Maxwell’s equa-
tions (1) and (2) where H is the magnetic field strength, J
the (volume) current density, E the electric field strength,
e the permittivity and m the permeability of the (linear and
isotropic) medium.
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After some manipulation, we obtain the vector wave equa-
tion (3) for the magnetic field strength.
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It should be mentioned that several steps have been
omitted for the sake of brevity. They can be found in full
detail in (Felsen, 1976) and in (Mittra, 1973). The appro-
priate Green’s function for this problem is defined via (4).
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and G is the solution of the three-dimensional scalar wave
equation (Morse, Feshbach, 1953). p is an arbitrary vector,
t is the time at the observation point and t’ at the source
point respectively. R is the distance between observation
point and source point and c is the velocity of electromag-
netic signal propagation defined by ¢ = (e ) "> . All
primed quantities refer to the source point, unprimed ones
indicate the observation point. In the following analysis,
primes will be used to indicate vector operations in source
co-ordinates. Also, a prime will be used to indicate a
normal defined at a source point.

Applying the vector equivalent of Green’s theorem where
all operations are performed in the source co-ordinates

+

t
J [ A VxVxG-G-V'xVxAldQr =
=0 Q

+

t
=[] ff GxV xA-AxV' xG} - n'drdr (6)
=0 T

we arrive after some manipulation which again can be
found in (Mittra, 1973) at the magnetic field integral
equation for perfect conducting bodies. In (6), t+ denotes
t+¢ where e is a small time increment to avoid ending the
integration at the peak of a delta-pulse (5).
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In (7) n denotes the unit vector normal to the boundary. H
is the magnetic field vector, r the position vector and V the
del-operator. T(r) denotes the coefficient of the singularity
which is 2 for points on a smooth surface and W/4p for
points on an edge or a vertex with Q the solid angle. The
value of T(r) is dependent from what side of the boundary
the excluded volume is seen and it is therefore different
from that used in (Mittra, 1973). For a more detailed
treatment of the step from the integral representation of
the magnetic field strength to the integral equation for the
surface current density, the reader is referred to the excel-
lent discussion in (Mittra, 1973). With the surface current
density

J=nxH

and time quadrature from t’=0 to t’=t+, equation (7) takes
the form

T()J(r,)=nxH" (r,f)+
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Equation (9) is the simplest vector integral cquation due
to the fact that only one unknown remains in the equation.
It is obviously an integral equation of the second kind
which is well suited for numerical approximation. The
evaluation of the integrals does not pose severe problems
because of the geometrical terms which make the kernel’s
singularity of order O(1/r) on a smooth boundary. On
non-smooth boundaries, the normals are not uniquely de-
fined at the geometrical singularity. So additional difficul-
ties arise which have to be circumvented by moving the
boundary nodes away from the geometric singularities
(Ingber, Ott, 1991).

2. BOUNDARY ELEMENT FORMULATION
2.1 The BEM-Discretization of the MFIE

The numerical treatment of the boundary integral equation
(9) can be performed by applying the boundary element
method (BEM). This implies the discretization of the
closed surface G of the considered region W into finite
elements, the so-called boundary elements. There exists a
widespread variety of possibilities to accomplish the mod-
eling of a boundary G (Brebbia, 1980).

For the discretization of the boundary of a 3D problem
quadrilateral elements of second order may be used. The
transformation of such an clement from the global to the
intrinsic co-ordinate system is shown in fig. 2.

For the definition of a structure (the so-called macro
structure) 9-noded elements are employed which can be
subdivided automatically into 8-noded boundary elements
in order to produce a finer mesh. The central node usually
is neglected thus resulting in a smaller number of bound-
ary nodes (Cheung, Yeo, 1979).
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Fig. 2 - Principle of boundary-discretization using eight-noded
elements.
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The field quantities arc also approximated by the same
shape functions (isoparametric elements).
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The subscript k denotes the nodal value of a quantity at
the boundary point k, € and ) are the local co-ordinates,
N, is the shape function for node k. The terms
ok, Bk, Yk, and 8 are factors which take the different
orientations of global node vectors and local source vec-
tors into account. These factors are obtained via the fol-
lowing relations at the nodal points which are defined by

‘their local co-ordinates (&g , 10) .

(12)
(13)

Due to the isoparametric approximation of the boundary
I', the element-based tangential vectors do not coincide in
general with the global tangents which are computed using
the mean value of the adjacent element-normals. The ele-
ment-based tangentials are defined by (14) and (15), the
local normal is the normalized cross product of the tangents.
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The differential surface element can be calculated by (16),
the surface integration in (17) is performed using Gauss’
quadrature formula.

arE,n)= d§dn

or odr
Tk e 16
AT (16)
The geometrical discretization transforms the boundary
integral equation into a system of linear equations. Equa-
tion (9) can be written for the i-th field point as follows.

N
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Considering all N nodes (i=1, ..., N) and all M time steps
(1=1, ..., M) this procedure leads to a system of linear
equations which can be written in matrix notation. The
matrices [A;] can be found from the time-discretized
version of (17) where every time intervall # in the past
(within the number L,,, (20) of time-steps which is given
by the retardation of the electromagnetic signals) gener-
ates its matrix [A; ]. The time axis has been subdivided into
constant elements where a linear variation of the field
quantities is assumed.

M-1
Av] i ={nxHi] -3 [A] 3] (19)
I=max(1,M-L,)
Lyet = int (%gi”/—c) J +1 (20)

The right hand side of (19) contains only the incident field
Hinc and already known values of the surface current
density at past time instands. So (19) can be solved by
building up the solution from previously calculated results
employing a time stepping-procedure.

The use of eight-noded boundary elements results in a
coupled system of equations that means a matrix inversion
has to be carried out since all nodes within a distance
¢ A t from the observation point are coupled with the latter.
This inversion however makes the system stable against
spurious oscillations which frequently occur in time-step-
ping procedures without matrix inversion.

It is well known that conventional time-stepping methods
provide the solutions only for one aspect angle. But since
we calculate the full matrix of coefficients and store it, we
have no need to repeat the whole computation of the
matrix’ entries for different angles of incident. Thus, the
solution is obtained by matrix multiplication of the (once
inverted and stored) matrix of the uppermost time-step
with the right hand side consisting of the vector of incident
field values at the collocation points and of the already
known current values at previous time-steps (multiplied
with their element matrices representing the past). In this
way, we get a behaviour which is comparable with
frequency-domain methods.

2.2 Problems with Eight-Noded Boundary Elements

Although eight-noded boundary elements offer the possi-
bility of an accurate description of geometry and field
quantities, certain problems arise due to the non-smooth-
ness of derivatives at the element contours.

The first one is that the globally defined normal and
tangential vectors are not unique in a node-point because
of the quadratic approximation of the body’s shape. Fig.
3 sketches the problem.

On smooth boundaries the field quantities are defined
using “global node-vectors” which are computed from the
local normals of the adjacent elements (which have the
node in common) using their mean value. In the surface
integrals, the field quantities are represented by the local
vectors weighted by factors which take the different orien-
tation of global vectors and local vectors in the node point
j into account. :
Since the collocation points of the equation - the boundary
nodes - are located directly on the contour of a boundary
element, and the kernel of the integral is singular, the
wrong choice of the vector n in (17) introduces an signif-
icant error in the computation fo the element matrix’
entries.

Fig. 3 - Surface vectors at an element-element interface (cross-
section).

If the abovementioned vector is replaced by an element-
based local normal, the singularity of the kernel can be
reduced to the order of O(1/r) and the integration is per-
formed without difficulty.

At sharp edges or vertices, some field quantities tend
towards infinity although their energy contents has to
remain finite e.g. (Felsen, Marcuvitz, 1973). Since the
analytical behaviour of these fields is known in first ap-
proximation (Van Bladel, 1991) the nodes are moved
away from the geometric singularity.
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Fig. 4 - Corner of a cube with moved boundary element nodes.

This results in the use of semidiscontinuous elements
(Ingber, Ott, 1991) which avoids also problems with non-
unique surface vectors at edges and vertices. In the gap
between the old and the new node position, the shape
functions are weighted with Van Bladel’s analytical solu-
tion. Fig. 4 shows a corner ¢f a cube discretized with
semidiscontinuous elements. The node positions of con-
ventional isoparametric boundary elements were situated
directly on the edges and on the vertex (now geometrical
nodes used only for the description of the geometry). The
values of the surface current density are described in the
so-called functional nodes. On a smooth portion of the
body geomtrical nodes and functional nodes coincide.

3. APPLICATIONS
3.1 The Perfect Conducting Sphere

This problem is one of the standard test problems-for all
scattering codes since its analytical solution is (at least in

the frequency-domain since the beginning of our century)
known, although it does not say anything about the be-
haviour of the method in the case of sharp edges or
corners. We wish to state that impulse scattering from a
sphere has been published as a test case from nearly every
author dealing with this topic since the work of Bennett in
the late 1960s, e.g. (Uslenghi, 1978). Therefore, this ex-
ample is given here to show how good our results coincide
with analytical ones. Our chief aim was to show how to
obtain a numerical stable solution and how to deal with
sharp edges and vertices in the time-domain using higher
order boundary elements which (to our knowledge) is a
relatively new topic.

Due to the smoothness of the boundary, all kernels are of
the order O(1/r) and so, numerical integration does not
pose problems if the normals are carefully chosen.

As obstacle serves a perfect conducting sphere of diameter
d=2m, the pulsewith of the incident Gaussian pulse (21)
is of the order of twice the sphere’s diameter.

p(r—=ro)—c{t—-ty) 2

H™-H“e!" & | (1)

p is a unit vector normal to the wavefront and a is a decay
parameter. At a distance of 2a from the pulse’s peak, the

magnitude has fallen to about 2% of H§* . The value of a
was chosen to be 1m.

Fig. 5 shows the surface current density at two equatorial
points, the front-point 1 and the side-point 2. The results
were compared with the analytical solution in point 2
(thick points in fig. 5 over the dashed line) obtained by
Bennett via the Mie series solution in the frequency
domain and subsequent Fourier transform which was pub-
lished by (Rao, Wilton, 1991). The peak value of the
incident wave used of Rao and Wilton has been scaled to
1 A/m. The agreement between our solution and the ana-
lytical one is very good. Our solution shows no instabili-
ties for late times, even for coarse discretization. At this
point we want to emphasise the difference between our
approach and that of Rao and Wilton. They use the EFIE
which has the advantage to be valid even at plane struc-
tures such as a flat plate, however, they have to deal with
an integral equation of the first kind where the computa-
tion of the self patches is essential for the solution and can
be complicated. So they have to calculate the surface
divergence of the electric surface current density via the
shape functions which introduces charge doublets on two
adjacent elements. These charge doublets may be a reason
for their need of a high discretization and the instabilities
in time which occur at relatively early times. In fig. 5, the
magnitude of the tangential component of the incident

magnetic field at the point 1 is shown as Ji (22).

Ji=|nxH" (1,1 (22)
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Fig.5 - Time variation of the electric surface current density at
front-point 1 (solid line) and at side-point 2 (dashed line). Thick
dots on the dashed line: analytical solution via Mie series and
Fourier transform obtained by Bennett and published recently by
(Rao, Wilton, 1991). Thick line: magnitude of the rtangential
component of the incident magnetic field strength. Inset: scatterer
geometry with incident field vectors.

3.2 The Perfect Conducting Cube

A more interesting problem is the scattering of a pulse
from a body with edges and corners, e.g. a metallic cube.
As we move the boundary nodes away from the geometri-
cal singularities, problems with not uniquely defined nor-
mals are avoided. As an incident pulse serves again (21)
with a=2m. The results are compared with a BEM package
based on the use of constant elements also developed at
our institute (which is, of course, a well known approach).
That means the field quantities are assumed to be constant
over a whole element. The observation points are therefore
located in the centre of the element and so no problems
with nonunique vectors occur. The main disadvantage of
the constant elements is that a great number of them is
necessary in order to obtain an accurate solution.

Fig. 6 shows the clectric surface current density at two
points of the surface, front point 1 and side point 2 (solid
line and dashed line). At the same points, the surface
current density was computed using constant elements
(thin dotted lines in the vicinity of the solid and the dashed
line resp.). The two solutions show good agreement, al-

though the package with constant elements uses only 25
patches per cube-face which is a rather coarse discretiza-
tion. To avoid instabilities, the constant package also
employs a matrix inversion technique coupling a certain
number of surface patches per time-step.

1]
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Fig. 6 - Time variation of the electric surface current density at
front-point 1 (solidline) and at side-point 2 (dashed line). Dotted
lines close to the solid and the dashed line: solutions at the same
points obtained via a BEM package using constant elements.
Inset: scatterer geometry with incident field vectors.

3.3 Computation of Scattered Fields

Although the comparison of surface current densities is
the most interesting topic from a modeller’s viewpoint
since it exhibits the value of a solution in the most impres-
sive way, remote sensing applications require the com-
putation of scattered far-fields. This re-radiated fields can
be calculated using the integral representation for the total
magnetic field strength H (23) with the coefficient T(r) of
the singularity from eq. (7) set equal to 1 (Mittra, 1973;
Felsen, 1976). The scattered magnetic field H° is ob-
viously the surface integral over the induced surface cur-
rent density J multiplied by Green’s function.

Hr,)=H"(@,)+H (r,)=H"(r,?) -

1,1 9 NI 4
ﬁf{(R2+Rcal’)J(r’t)xR}‘t‘ﬂ‘—R/cdr
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The computation of the scattered electric fields requires
the integral representation of the EFIE (Mittra, 1973;
Felsen, 1976) employing the surface divergence of the
surface current density which is not easy to obtain for a
general co-ordinate system. Therefore the normal com-
ponent of the electric field at the scatterer’s surface should
be computed via a weak formulation of the surface diver-
gence of J incorporated into the integral equations. This,
however, increases the number of unknowns.

In addition to the sphere and the cube, a cylinder and a pair
of spheres have been calculated. The cylinder has a diame-
ter of d=2m and the same height h. Its axis has the same
orientation as the incident magnetic field. The spheres are
placed one behind the other. The spacing between their
mid-points is s=3m and the spheres’ diameter is again
d=2m. The decay parameter a was chosen to be 2m.

In the time-domain, scattering centres can be located
directly from the far-field response. For two spheres, one
observes roughly double the number of backswings as for
the single sphere. From the run-time differences the dis-
tance between scattering centres can be estimated.

As to be expected, the cylinders’s scattered field magni-
tude of the specular return is between those of sphere and
cube, according to the sizes of the reflecting front portions.
The cube’s creeping wave return has the longest delay due
to its larger circumference.

Figs. 7 and 8 show the backscattered magnetic field
strength in the far-field zonc for the abovementioned
obstacles. The backscattered field has been scaled in the
usual way with respect to R/a where R is the distance
between the observation point and the origin of the scat-
terer’s co-ordinate system, and a is the decay parameter of
the incident Gaussian field. On the abscissa, the far-field
time in light meters is shown. The far-field time is defined
as ct-R and a far-field time of O corresponds to the time at
which a signal sent from the co-ordinate origin (R=0) at
(t=0) arrives at the far-field observation point.

CONCLUSION

The magnetic field integral equation was solved in the
time domain for the case of arbitrary shaped conducting
objects. It was shown how the boundary of the scatterer
can be discretized and how the electric surface current
density can be approximated using cight-noded quadri-
lateral boundary elements of second order. The problems
arising with sharp edges and corners have been discussed.
The presented examples show the applicability of the
method.
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Fig. 7 - Magnetic far-fields in the backscattering direction. Solid
line: sphere with diameter d=2m. Dashed line: two spheres with
diameter d=2m and a spacing of s=3m between their mid-points.
Inset: geometry of the scatterers.
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Fig. 8 - Magnetic far-fields in the backscattering direction. Solid
line: cube with sidelength d=2m. Dashed line: Right circular
cylinder with diameter and height d=h=2m.
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