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ABSTRACT

The heuristic imaging concept of time domain back-
propagation is briefly reviewed and related to SAR. Then,
algorithms based on scalar scattering theory like far-field
Fourier inversion and generalized Diffraction Tomogra-
phy are discussed within the framework of a unified
linearization theory. Some new fundamental results con-
cerning the information content of measurements are pre-
sented. Diffraction tomographic algorithms are then
applied to electromagnetic scattering data to reveal that
swept frequency or time domain experiments are
completely cquivalent as input data for tomographic im-
aging. Furthermore, an extension of linearized scalar in-
verse scattering to fully polarimetric linearized
electromagnetic inverse scattering is presented.

Finally, an iterative solution to nonlinear, i.e. quantitative
inverse scattering is discussed and illustrated with simu-
lated data.

INTRODUCTION

Microwave imaging has applications in remote sensing of
the earth, non-destructive testing of materials as well as
medical diagnostics. Pertinent imaging algorithms vary
from heurisitc principles (Mensa et al., 1981) to mathe-
matically sophisticated quantitative inverse scattering
(Schiiller and Chaloupka, 1989; Wang and Chew, 1989;
Joachimowicz et al., 1991). Recently particular concern
has been given to the polarimetric information in scatter-
ing data (Boerner et al., 1992), which can either be ex-
ploited via consideration of various matrices relating the
polarization of incident versus scattered field (Boerner et
al., 1991; Zebker and van Zyl, 1991), or via extension of
well established scalar inverse scattering schemes to the
polarimetric case (Langenberg et al., 1992). In this paper,
we sketch the fundamental procedure for this later ap-
proach, review linearized scalar inverse scattering, such
as time domain backpropagation and diffraction tomogra-

phy, and apply these algorithms in various forms to ex-
perimental data. This is an important step, because earlier
experiments (Li et al., 1990) can now be made in a fully
polarimetric mode (Sieber and Nesti, 1992: Blanchard et
al., 1992), and, therefore, detailed knowledge about the
inherent properties of presently available imaging algo-
rithms as well as future versions (Langenberg et al., 1992;
Schiiller and Chaloupka, 1989; Wang and Chew, 1989;
Joachimowicz et al., 1991) is required.

1. SAR IMAGING VERSUS TIME DOMAIN
BACK-PROPAGATION

Usually, the Synthetic Aperture Radar (SAR) imaging
scheme is understood and derived exploiting the Doppler
shift of the scattered signal transmitted and received by an
airborne antenna (Mensa, 1981; Harger, 1970; Wehner,
1987). Alternatively, the time domain backpropagation
principle can be applied to yield mathematically the same
algorithm, and, in addition, this principle can be quantita-
tively evaluated utilizing inverse scattering theory (Lan-
genberg, 1987).

Let us start with a scalar wave equation (A is the Laplacian
operator) for some potential (or scalar field component)
@ (R, 1), where R denotes the vector of position and ¢ the
time:

148
¢ 97
Here, g (R, ¢) is the prescribed known source where the

field originates, being nonzero in a source volume V, and
c is the wave speed. The standard retarded potential solu-

tion of (1) reads
|—_—-'|
(R',t——)

4 |R-R'|

A(I)(B:t)— ‘I’(B’t)=—‘1(g,t)- (1)

q
*®R,0=[f] 4R, @

where R’ indicates the source point. Now we ask for the



164 EARSeL ADVANCES IN REMOTE SENSING, Vol. 2, No. 1 -1, 1993

Fig. 1 - lllustration of time domain backpropagation.

. set of those source points, whose source density g at time
t, contributes to the amplitude at a presribed R for a fixed
time #; this set is given by

R-R| .
fyw=fmr——
q c > ( )
reordering (3) according to
c(t-1g)=|R-R' “)

we state, that all points R’ on a sphere centered at R with
the fixed radius ¢ (¢ — #,;) contribute simultaneously at time
t to the point R. The signal amplitude at space-time-point
Rt has its origin in all source points g (R',?) on the
R'-sphere (4).

Instead of deriving - as above - the location of source
points contributing to an R #point, we can ask the follow-
ing question: which of the R #-points with R € Sy — Su
denoting an appropriate measurement surface - can be
reached simultaneously by a signal originating from pre-
scribed R’ t,-points? Equation (4) gives the answer; we
only have to evaluate ¢ as function of R € Sys for known
t; and R'. Let us specialize Sy as a plane parallel to the

xy-plane of a cartesian coordinate system, in Fig. 1, with
a distance zo from the origin. The source region V; is
supposed to reside below that plane, hence, in (2), the
integration variable 2’ is always less than zo. Then we have
explicity instead of (4)

Flt-t)-x-x)V-@-yV=(-2), (%)

which describes in terms of the function ¢ (x , y) a so-called
travel time surface, particularly a hyperboloid of revolu-
tion (compare Fig. 1). The equiphase surface of the field
from a single g (R’ £,)-point defocuses into such a travel
time surface, and, therefore, this point should be recovered
from the focusing of the measured data, i.e. from the
knowledge of ® (R, 7) on Sp. This is basically the prin-
ciple of the Synthetic Aperture Radar: integrate the xyt-
data along the travel time surface for every prescribed
pixel in the imaging space; whenever this pixel contains a
physically real scatterer, a high amplitude is obtained; if
not, only noise is displayed.

For nondestructive testing of materials with ultrasonic
acoustic waves the above imaging algorithm has been
adopted and termed SAFT for Synthetic Aperture Focus-
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ing Technique. Experimental results for this kind of appli-
cation are abundant (Schmitz et al., 1986; Langenberg
1992).

Formulated as a heurisitc principle, neither SAR nor
SAFT exhibit theoretical limitations and assumptions con-
cerning their validity; in addition, the physical meaning of
the images cannot be easily established. Fortunately, when
evaluated within the context of inverse scattering theory,
these problems can be solved.

We have derived the time domain backpropagation imag-
ing principle as a “solution” of the inverse source prob-
lem. In inverse scattering, equivalent sources on or inside
the scatterer have to be defined, which will be pursued in
the following for certain canonical classes of scatterers.

2. LINEARIZED SCALAR INVERSE SCATTERING
2.1 Definition of Equivalent Sources

Lossless dielectric and perfectly conducting scatterers
provide canonical equivalent sources for microwave im-
aging. Let us consider the dielectric case first. This means
that a certain region of space is characterized by a spatially
varying wavespeed ¢ (R) embedded in a medium with
constant c; the volume of this region is denoted by V., its
closed surface by S.. The incident - illuminating - field
coming from the source volume Vj is given by ®; (R, 1),
the field scattered by the spatial inhomogeneity by
®; (R, £). Then, after introducing a Fourier transform with
regard to ¢ according to

PR, 0)=[ PR, e’ dr,

(6)
the following differential equation for the total Fourier
transformed field
PR,0)=Di(R,0)+P: R, ) (7
is obtained (Herman et al., 1987)

ADPR,0)+K®R,0)=-¢[R,n)-¢&" (R, ).(8)

Here, g/" (R, w) is the equivalent source accounting for
the scatterer as defined by

- .
q‘é“’(g,w)=—k2[ 1—"2—];——) TROR,0), (9

where k=w/c and k(R)=w/c (R) are respective
wavenumbers; the upper index stands for ’penetrable’.
The characteristic function

1 forREV,

F(B)={ 0 forREV, (10)

constraints the equivalent source to the scattering volume
V.. Introducing the object function

[ K (R)

OR)= 1-=5" I'(R) (11)
we have

" R,0)=-FO0R) PR, n), (12)

which clearly exhibits the field dependence of the equiv-
alent source. As a solution of (8) we obtain

(I)(B,OJ)=(D;'(B,U))+ (13)

S R 0GR-R 0 PR

for the total field with ®; (R, w) given by the Fourier
transform of (2); G (R - R’, w) is the scalar threedimen-
sional free space Green function

jkIR-R|

CR-RL0=R-R|

(14)
To derive equivalent sources modeling the perfectly con-
ducting scatterer, we recall that a twodimensional scatter-
ing problem can always be “scalarized” to a TE- or
TM-problem; the pertinent boundary condition then re-
veals the TM-case to be a (twodimensional) Dirichlet
problem, and the TE-case to be the corresponding
Neumann problem. In acoustics, the Dirichelet boundary
condition stands for a perfectly soft scatterer - vanishing
pressure on the surface - and the Neumann boundary
condition describes the perfectly rigid scatterer, which
means vanishing particle displacement on the surface.
We state the Huygens-type representation for the scattered
field outside V.

CDS@"”):IIS [®R,0)VGR-R,m)- (15)
+G(Bc—1_1’,w)V'<I>(B’,w)]-g’dS',

where n' denotes the outward normal on S..
Introducing the Dirichlet boundary condition
P (R, w)=0for R' €S, we have

R, 0)=-f[ GR-R,0)n V&R, w0)ds
(16)

which defines an equivalent source - compare (13) -

R, 0)=-y(R)n- Vo R, n) 17)

if we utilize the concept of the singular function y (R) of
the surface S, according to the definition (Langenberg et
al., 1992)

T(R)=-n-VI(R); (18)
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The singular function has the distributional property to
reduce a volume integral to a surface integral

ffvK(B)¢®dSB=ffS¢(g)dS (19)

for any appropriately given function ® (R).
The Neumann problem can be treated as follows. The
boundary condition V ® (R, w) - n = 0 for R € S. reduces
(15) to
o R, 0)=[[ @R ,0)VGR-R,0) nds,
sc
(20

which, according to (19), can be written as a volume
integral

O R,0)=f[[ 1R)®R,0)VGR-R,0):
‘&R, 21)
where V. C V. Computing

V- (@Gyn)=yGVP-n+y®dPVG-n+PGV-(yn)
(22)

we obtain instead of (21)

(DS(B’(D):

[ [f V@R 0)GR-R,0)1®)n' | R-

Iy R)GR-R,0)V® R, 0) 0 dR -

-JJ[ PR . 0)GR-R,0)V-[yR)']FR.
(23)

Applying Gauss’ theorem to the first volume integral in
(23) we get

JIL V- 2R, 0)GR-R,0)y®)n' | R =

JI PR, 0)GR-R,0)y®R)n-n'dS, (24
where S is the surface of V; therefore — y (R) being zero
outside S, - the integral (24) is zero. The remaining two
integrals can be combined, and - once again exploiting the
behaviour of the singular function - the region of integra-
tion can be extended to infinite space yielding

o ®0)=-f [ [T ®Ve®R, 0) 0

+@R,0) V- [YR)N]}GR-R,0)d’R.
(25)

Therefore, equivalent volume sources for the Neumann
boundary condition can be defined as

¢R,0)=—PR,0) V- [YR)D]-yR) VP (R,0) n
(26)

which reduces to

@R, 0)=-®R,0)V-[YR)n] @7

if the boundary condition is inserted explicitly.
In this section we have defined equivalent sources
gc (R, o) for three classes of canonical scatterers: pene-

trable scatterers with g, = gZ°" and

" R,0)=-FOR @R, w), (28)
perfectly soft scatterers with g = ¢¢ and
R, 0)=-yR)n- VO R, 0), 29

and, finally, perfectly rigid scatterers with g. = gc and

4R, 0)=-2R,0) V- [yR)n]. (30

Notice, all three equivalent sources depend upon the rotal
field rendering the direct scattering as well as the inverse
scattering problem nonlinear, as will be illustrated in the
next section.

2.2 Nonlinearity of the Scattering and Inverse
Scattering Problem

Replacing the scatterer by its pertinent equivalent source,
we obtain the so-called Lippmann-Schwinger equation

PR .0)=Pi(R.0)+[[[ 9. R, 0)GR-R w)dR,
(31)

which is an integral equation for the total field inside or
on the scatterer, because of the field dependence of
qc (R, ). Therefore, it cannot immediately be “decon-
volved” to yield the object or singula function, if, for
instance, ® (R, w) is known outside the scatterer by, say,
appropriate measurements.

The fact that (31) is an integral equation is the reason for
the nonlinearity of the direct scattering as well as the
inverse scattering problem. Let us demonstrate that for the
case of a penetrable scatterer with gc = g&"
ing of a scattering operator

Bs{°}=—k2fffVCO@’)G(B—B’,w)'d3g’ (32)

via introduc-

yielding instead of (31)

® (R, 0)=P(R,n)+B{® R, ). (33)
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X(w) — (I)i(R,LU)

O———>

H(w)+— B,

Y(w) — 9,(R,w)

Fig. 2 - The scattering problem as an input-output feedback system.

Applying B; to (33) we get

B,[® (R, ) =B, [® (R, )] + By By [o (R, )] (34)
or

(I-B) B, [® (R, o) =B, [&: (R, )] (35)

where I accounts for the identity operator. The result after
formal inversion of (35) reads

B, [® (R, w)=(-B) "B [®(R,0) (36)
or, when compared to (33)
@, (R, )= -By) "B @ (R, w)} . 37

Equation (37) characterizes an input-output feedback sys-
tem (compare Fig. 2) with input frequency spectrum
X(w)=®; (R, w) and output frequency spectrum
Y (w) = ®; (R, m), where the system frequancy response
H (w) is given by the scattering operator. Hence, an addi-
tive decomposition of the system into subsystems - indi-
cating linearity - is not possible. Or, otherwise spoken, the
integration over V. which is involved in the scattering
operator, cannot be separated into integrations over sub-
volumes of V.. ,

Of course, the above nonlinearity disappears if the feed-
back loop is cut off. This yields instead of (37)

o° (R, 0)=® [R,0)+B @R, o) (38)
for R€&V; together with approximation
PR, w)=D;(R,w) forREV, this linearization is
known as the Born approximation, whence the upper
index. Obviously, it requires something like a weak scat-
terer (Keller, 1969).

Linearizations can also be invented for the other two
classes of canonical scatterers. They are associated with

the name of Kirchhoff, and, in principal, the total field on
the scattering surface is once more related to the incident
field alone. The argument follows so-called physical op-
tics; we will come back to it in the section on linearized
polarimetric imaging. But notice, linearization is man-
datory as soon as the output of time domain backpropaga-
tion (or frequency diversity generalized diffraction
tomography) should be quantitatively discussed. In addi-
tion, the incident field has also to be specified in order to
end up with applicable algorithms; in general, bistatic
arrangements require a plane wave approximation,
whereas monostatic setups induce a point transmitter-re-
ceiver.

2.3 Frequency Diversity Generalized Diffraction
Tomography

2.3.1 Generalized Holographic Field and Porter-Bojarski
Integral Equation

Suppose the scatterer resides within an arbitrarly closed
measurement surface Sy defining a volume Vi D V; sup-
pose further that the measurements comprise the field
@ (R, w) as well as its normal derivative on Sy. We then
have as appropriate representation of the scattered field
outside Vs in terms of the Huygens integral

R, 0)=[[ [®R,0)V'GR-R,0)-

+GR-R,0)V ®R,0)] nds. (39)

Unfortunately, for points R inside Vs the integral (39)
yields only - ®; (R, w), and, therefore, tells nothing about
the field in the scattering region. R. Porter and N. Bojarski
independently proposed (Porter, 1970; Bojarski, 1981) to
replace (39) by
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OnR,0)=-[[ [®®R, 0)V'G"R-R,0)-

+G"R-R,0)VO[R ,0)] n'dS (40)

for points R inside Vs which defines the so-called gener-
alized holographic field ®g (R, w) via backpropagation
of the measurements, whence the complex conjugate of
Green’s function as indicated by the upper *. Applying
Green’s theorem to the interior of S3r and recognizing

AD;(R, )+ D (R,0)=-q. (R, o) for RE Vy
41)

we obtain the Porter-Bojarski integral equation for
REeVy

Oz (R, w) =
2 [ 4®, 0)GR-R, )R,

(42)

where the imaginary part of G is involved as kernel. Due
to the compact support of g. we have been able to extend
the integration limits to infinity. Notice, (42) has a com-
putable inhomogeneity, hence, we have an integral equa-
tion of the first kind for the unknown equivalent sources.
Before we discuss its solution, we give a somewhat differ-
ent definition of generalized holographic field yx (R , w),
which seems more appropriate for the application of spa-
tial Fourier transforms:

bR, 0) =[[ [®®,0)VGR-R 0)- @3
+Gi(R-R,0) VO; R ,0)] n'ds .

This definition results in the same Porter-Bojarski equa-
tion for Wy (R, w) for points R either inside or outside
Su which differs from (42) by omission of the factor 2j. In
addition, it makes (43) amenable to a threedimensional
spatial Fourier transform. We have the relationship:

; _[6r (R, w) for R inside Sy
Zivn R, 0) = {@H (R, ®) + @5 (R, w) for R outside Sy °
(44)

Trying to solve the Porter-Bojarski integral equation we
have to cope with two problems

* The equivalent source comprises two unknows, the ob-
ject (singular) function and the total field. A remedy
concerns linearization with either the Born or Kirchhoff
approximation, together with a specification of the inci-
dent field.

The generalized holographic field is rather pathological
in the sense that its threedimensional spatial Fourier
transform is only nonzero on a sphere of radius k in
Fourier space, which is called the Ewald sphere. There-
fore, it provides only minimal norm information about

the equivalent sources. The remedy is diversity together
with a specification of the incident field, resulting in
either frequency or angular diversity. To apply diver-
sity, linearization is once more mandatory.

As a matter of fact, the second one of the above items has
its origin in the structure of the threedimensional spatial
Fourier transform of the imaginary part of Green’s func-
tion, being defined as

400 40 400 .
GK,0)=[ [ [ GR,0)e’*RSR. (45
Since G; (R, w) satisfies a homogeneous Helmholtz equa-
tion ‘
AGi(R,w)+K Gi(R,w)=0, (46)

we obtain by application of the Fourier transform (45) - it
isK=|K|-

(K*~ ) Gi(K,0)=0 (47
with the general- distributional- solution
Gi (K, 0) = Go (0) 8 (K* - &), (48)

where Gy (w) denotes an arbitrary amplitude function. The
inverse Fourier transform yields

Go(w) sinkR

G; (R, o) =sign (k) e R

(49)

with the signum function defined by

—1fork<0

sign(k)={ 1fork>0"

Now, applying the above procedure to the real part
G, (R,m) of G (R, w), i.e. transforming the differential
equation

AG:(R,w)+k G, (R, )=~ (R) (50)
to find the solution in K-space (Fourier space)
G (K,0)=—F5"5 51
K, 0= o (51)
we get via inverse spatial Fourier transform
coskR
Gr(gaw)= 4R (52)

and, hence, (49) is the pertinent imaginary part - pertinent
in the sense, that the time domain Green function
G (R, t)is causal - to be conmbined with the real part (52)
if and only if

Go (w) = mw sign (k) . (53)
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Therefore we finally have

G: (K, w) = sign (k) & (K* - i) (54)

yielding the following Fourier transformed Porter-Bojar-
ski equation

T (K, 0) = wsign (k) G (K, @) § (K - &) . (55)

We state that the generalized holographic field
VYu (R, w) contains only information about the Fourier
spectrum of the equivalent sources on the Ewald sphere
K=k

In the following we want to show explicity that, in fact,
the Fourier transformed generalized holographic field is
identically zero outside the Ewald sphere; on the Ewald
sphere it is related to appropriately defined measurements.
Noticing

[ [®®R,0)VGR-R, 0)-

Sur

+GiR-R,0)VO,R,w)]-n'dS=0 (56)
on behalf of Green’s theorem, we can equally define
instead of (43)
YR, 0)=[[ [®R,0)V GR-R,0)-

Sm
+Gi(R-R,0) V'O (R ,0)]-n'dS. (57)

Taking the spatial Fourier transform of this equation re-
sults in

IT)H(E7(O)=GI'LI§7(0)M(E’U)) ‘(58)
with
MK, w)= (59)

ffs [@(g’ ,o)We ' BER_v o R, w) e‘fﬁ‘ﬁ'] -n'dS’

By introducing the singular function ys, (R) of the
measurement surface, (59) transforms into

MK, o)= f_+: f: f_+: Vsu (R)
[@(g',m) VR R_yvorR ,w)e"jg'g’} ‘n'd® R’

(60)
or
M(K,(D)=
+® 4+ 4+ . ,
‘J'E'f f f vs, R)n' @ (R, 0)e ERFR -
+0 40 40 ) )
-f f f v, (R)0 -V O R ,0)e 'ERFSR

(61)

The integrals in (61) are obviously threedimensional Four-
ier integrals enabling us to transform M (K, ) into the
spatial domain according to

M(l_{’w)=_v'lYSM(_B)ECD(B!w)]_YSM(B)E'

VO (R,w). (62)

Defining equivalent Dirichlet and Neumann type sources
in terms of the field on the measurement surface®, i.e.
according to (29) and (26)

g5, (R, @) =~y5, R)n- V& (R, 0) (63)

43R, 0)=-®([R,®) V- [ys,(R) 0] -y, (R)m-
~V®(R,n) (64)

we find by comparison with (62)

MR, 0) =g R, 0)+45 R, 0) (65)

This equation is a very intuitive and useful way to charac-
terize measurements mathematically. Equation (58) tells
us

Tr (K, o) =7 sign (k) M (K, o) & (K* - &) (66)
yielding when compared to (55)
M(K,w0)d K -K)=g (K, »)d (K -k). 67)

This is just another version of the Porter-Bojarski equa-
tion; from it, we either deduce

M(B,(D)*Gi(g,(l))=qc(g,ﬂ))*GE(B,(D), (68)

where the star indicates threediomensional convolution
with regard to R, or, equivalently

MK=kK ,0)=G. K=kK ,0). (69)

Hence, a complete set of measurements on Sy made for a
single frequency and a single incident field only provides
Ewald sphere information about g. (R, w) - at least within
the context of the Porter-Bojarski equation. But, as we
deduce from the Huygens representation (15) of the field
outside Sy, this complete set of measurements fully deter-
mines that field, and, therefore, nothing is won measuring
®; (R, w) in some finite measurement volume. We con-
clude that diversity in either frequency or in another ap-
propriate parameter of the incident field - like the angle of
incidence of an illuminating plane wave - is mandatory in
order not to stay with the minimal norm solution (69) of
generalized holography itself. Examples for such minimal
norm solutions are given in (Herman et al., 1987) and they
clearly illustrate, that there is no quantitative solution to
the inverse scattering problem - neither linearized nor

¥ Notice, the field does not necessarily satisfy any boundary condition on Spy, hence, neither ® (R, w) nor n - V @ (R, w) must be zero on Sys.
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normalized - for a single frequency and a single illumina-
tion angle, as it is sometimes claimed in the literature
(Caorsi et al., 1991).

2.3.2 Frequency Integration of the Porter-Bojarski Inte-
gral Equation

In microwave imaging one has easy access to frequency
diversity making phase coherent measurements over a
wide frequency range. Therefore, we discuss only the
frequency integration of the Porter-Bojarski integral equa-
tion and leave the reader to the literature for the angular
diversity case (Herman et al., 1987; Porter, 1986) and for
the “all the data” case (Oristaglio, 1989).

Let us illustrate why a straightforward solution of the
Porter- Bojarsky equation requires linearization. In Fig. 3
the (K:K,)K;-plane represent K-space (in cartesian
coordinates), and the k-axis refeis to frequency diversity.
The circles indicate Ewald “spheres” for two different
frequencies, and clearly, choosing the frequencies m; we
obtain an equivalent source q(_-(]) (K=k ﬁ , W1), whereas
the choice of wy changes qc(l) to qc(z) K=k f(_ , m)i.e. to
apply frequency diversity we have to control the
frequency dependence of the equivalent source. This is
possible if we linearize with either the Born or Kirchhoff
approximation.

We consider the penetrable scatterer for the “bistatic”
plane wave incident field

& (R, 0)=F (w) e/ KR (70)

i.e. with a fixed unit-vector of propagation f:i; F (w) de-
notes the frequency spectrum of the transmitted signal, be
it either for a swept frequency or a pulsed experiment. The
case of a point- source excitation is treated in (Esmersoy
et al., 1985) in a somewhat different way. Then we have
within the Born approximation - recall the definition of
O R)in(11) -

qépen,B(B’w)z_kzF(w)O(l_{)ejkﬁi'g- (71)

Real time domain signals only require consideration
o = 0 because negative frequencies are occupied by the
complex conjugate spectral values if three residing for
= 0; we then have instead of (55)

Tu (K, 0) == g2 (K, 0) 8 (K- k).

5{ dc (72)

Inserting (71) and integrating with regard to frequancy
yields (Herman et al., 1987)

R S Y B -kl R
O(R)= nm{fo kZF(m)k, V[ On (R.w)e™’ ]dk
(73)

r ko Q£2)(K = ks, ws)
T D K = ky,w)

K., K,

Fig. 3 - Frequency diversity in K-space.

which is an explicit inversion equation with precisely
defined assumption and approximations. Of course, for
the angular diversity case a similar equation can be
derived (Herman et al., 1987; Porter, 1986), and, instead
of considering the penetrable scatterer, the prescription of
perfectly soft or perfectly rigid scatterers results in inver-
sion schemes for the “visible part” of the singular function
of the scattering surface (LL.angenberg, 1987).

For the sake of the completeness we want to refer briefly
to the monostatic case also, even though the derivation of
the pertinent inversion algorithm is given in detail in
(Herman et al., 1987). To obtain something like a “mono-
static equivalent source” we return to the Lippmann-
Schwinger equation (31) for the born approximated
penetrable scatterer inserting

o JFIR-Ro|

en,B __ 12
" R, 0)=~FF©) O®R) g =g,

(74)

where we have assumed point-source illumination from
Ryo. For the monostatic case we select R = Ry to observe
the scattered field and hence

2jk|R-R'|

s (R 0) =~ KF @) [[ o®)—* AR,
v (4m|R-R'[)
(75)
which gives rise to a modified scattered field
mo . Jd (Ds (B > (,l))
O, R, w)=2n] | 5 — 76
® . 0)-2m)-2 kzF(m)} (76)
resulting in the differential equation
ADP™ (R, m)+ 4k D™ (R, w)=-0 (R). (77)
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This equation defines the monostatic equivalent sources
in terms of the object function itself; their field depend-
ence has disappeared, because we already had to introduce
the linearizing Born approximation in order to verify the
concept of the equivalent sources. Equation (77) defines
a Green function

2jk|R-R|

mo _
G (B,(D)_4JT“|B_BI|,

(78)
a pertinent Huygens principle, and the modified Porter-
Bojarski integral equation for £ = 0 according to
VA (K, 0) == 0 (K)d (K- 20). (79)
Frequency diversity - the only diversity to be applied in
that case - yields as inversion scheme

4 o0
OR)=— o .
(R) jnfo kOF° (R, w) dk (80)

2.3.3 Time Domain Backpropagation

We contain to dwell upon the monostatic case because the
experimental data, which were made available to us are of
that kind.

The right-hand side of (80) can be interpreted as an inverse
Fourier integral with regard to frequency for #=0; by
definition, it involves inversion of positive frequency data
only, hence, the resulting time function is complex with
an imaginary part being the Hilbert transform of the real
part. In order to see this explicitly we rewrite (80) intro-
duncing a unit-step function u (w)

4

OR =5 jwefr®,0)u®do
nc Y-

(81)

and realizing that its inverse Fourier transform is given by

1 _k
F {u(m)}—26(1)+2njt, (82)
which results in
41 90 _mo . 0 ~ mo
OR) =" | LOf R, 0)+jH >0 R, 1)
c| ot ot il
(83)

Here, H; indicates the Helbert transform with regard to ¢
according to

HfO) =1 10 g (84)

MY _ot—-T

Per definition the object function is real valued, and,
therefore,

wlFor®0] <o (55)

=0
has to hold. Of course, this is only so for exact Born data,
which leads to the conclusion that the degree of nonzero-
ness of the left-hand side of (85) indicates the deviation
from the assumptions and approximations which are in-
volved in the inversion scheme.

From (85), the monostatic time domain inverse scattering
algorithm reads

O® -5, 08 ®. (36)

t=0

With the help of (40) we can compute 7° (R, ) expli-
citly in terms of the monostatic scattered field resulting in
an exact - within the Born approximation - time domain
backpropagation scheme of data to recover the object
function (Herman et al., 1987).

For practical purposes it seems more appropriate to utilize
some assumptions, which are in general satisfied in micro-
wave imaging applications. First, let us evaluate (76)
asymptotically for high frequencies according to

R, 0) = 20l R, w), (87)

¥ o0k
where the upper index “I” refers to “impulse responsc”,
i.e. to the F (w) filtered field; second, we ignore the normal
derivative if the data in (40) - it is hardly available except
for planar and circular cylindrical measurement surfaces
- and, third, we ignore terms of the order |[R-R'|™?
resulting from the normal derivative of Green’s function

in (40). Then we obtain from (80)
o= [Taf[ L al®,w)]
jndo sy 0k =’

e "2/KIR-R| pr (R_R)

R-R| |R-KR| ©° (38)
or in time domain
R_ 4
|R Rll (Dg(l_{,’t'l-zl_c—l
2 =
OR) =4 t —
i ffsM( e ) [R-R|
v R-R)
——— ds'. 89
IR-R'| | 89)

For closely paraxial data and image points we can further
ignore the factor

n' - (R-R)
|[IR-R'|
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to obtain
2|R-R'|

c

1( 5 ’
O(B)'HSM‘DS R ¢ ds'. (90)
Notice that we switched intentionally from the object
function to an “image function” - it also absorbs all pre-
factors - because we can no longer expect that an imaging
scheme relying on all the above approximations still yields
the object function, or the singular function for the perfect
scatterer case.

As amatter of fact, (90) is precisely the heuristic SAR time

domain back-propagation scheme, which was discussed in

Section 1; a fixed time sample for a fixed observation

point R’ in data space has to be backpropagated to all

image space points R satisfying
2|R-R'|

t b
c

1)

which is obviously a circle. Therefore, linearized inverse
scattering theory is the quantitative framework for syn-
thetic aperture imaging.

We intensely applied and investigated the above SAR - or
SAFT - scheme to nondestructive testing of materials with
ultrasonic acoustic waves (Herman et al., 1987; Lan-
genberg, 1992). But as soon as a scalar approximation of
electromagnetic waves can be justified - for instance for a
strictly twodimensional experimental setup -, we can util-
ize the same computer implementations of the algorithms
as before to process microwave scattering data. Particu-
larly, we processed data that were obtained with the
measurement facility of the European Microwave Signa-
ture Laboratory of JRC in Ispra/Italy (Sieber and Nesti,
1992). The same measurements will be discussed in some
more detail in (Hohmann, 1992; Nesti, 1992). Here, we
simply want to illustrate the feasibility of the underlying
imaging principles and their internal relationships.

The measurements comprise complex bandlimited swept
frequency quasi-monostatic - transmitting and receiving
antenna are separated by 29 cm - scattered field data for
HH or VV polarized target illumination in either the
copolarized (HH or VV) or crosspolarized (HV or VH)
component; each of these components is treated as a scalar
quantity. The data spectrum @ (R, w) for positive
frequencies can either be supplemented by its complex
conjugate for negative frequencies to yield a real valued
time function @5 (R , £), or we can define a complex valued

time function ®; (R, £) according to

OI(R,N)=F DR, 0)u(w)], (92)

that is to say, utilizing only the positive frequencies; but
due to (82) we have

<I>§(B,t)=%<l>s(g,t)+j%H,{CDs@,t)}, (93)
which, tells us that the imaginary part is completely deter-
mined by the real part, it does not contain any new infor-
mation.

Fig. 4 gives a sketch of the geometry; three cylindrical
aluminum rods are distributed on an object “table” and
illuminated within three frequency bands (2 -10 GHz, 10,
18 GHz, 18 - 26 GHz) from a linear aperture of width 3.4
m in a quasi-monostatic mode. Even though precise cali-
bration (Sieber and Nesti, 1992) allows for combination
of these data in a single inversione algorithm, we have
chosen the 10 - 18 GHz band to compare various algo-
rithmic alternatives. As already mentioned, we do not
want to comment on the experimental details; instead, the
reader is ferred to (Sieber and Nesti, 1992). Let us denote
the planar measurement surface, which is actually a
straight line with distance z' = d from the origin, by x'. The
complex time domain data ®; (x',z =d,f) can then be
processed in several ways:

1. % { D (x',2 =dy1) } = ot (x,2).

We take the real part of the complex data as obtained
by frequency Fourier inversion of the measurements
within the 10 - 18 GHz band utilizing a Hamming
window, apply the real time domain backpropagation
scheme according to (90) when specialized to two
spatial dimensions, and end up with a real valued image
on (x,z). Due to the frequency band limitation of the
experiment this image generally exhibits an oscillatory
structure, which can be suppressed complementing
o (x,z) by its Hillibert transform H; { ot (x,2) } accord-
ing to

om (x,2) + H:{ ont (x,2) |

to a complex image function and taking the magnitude of
the latter. The result is presented as the image of Fig. 5d).
The location of the three cylinders is clearly recog-
nized; the axial resolution is proportional to the recip-
rocal bandwidth, the relatively poor lateral resolution
is - as we assume - mostly due to the set-off of trans-
mitter and receiver, and, of course, partly due to the
finite aperture. More detailed discussions can be found
in (Hohmann, 1992), addressing also the appearance of
the lower amplitude ghost images as well as methods
for their suppression. As a matter of fact, the ghosts
originate from multiple reflections between the rods,
which are not correctly handled by a linearized algo-
rithm, which relies on the Kirchhoff approximation of
physical optics.

2. & { D5 (x',2 =d) } = 03 (x,2).
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We complement this imaginary part by a real part as
obtained by an inverse Hillbert transform

H; ' o5 (x.2) | +j 05 (x.2)

basically the same image results as before, i.e. we have
H | on (x,2) | = 03 (x,2), and o (x2) =H; ' | o3 (x,2) }.
This is shown mathematically in (Herman et al., 1987).
3. @ (', 2 =dt) = 0. (x,2).

This might be called complex time domain back-
propagation; the result - the magnitude of oc (x,2) - is
given as the image of Fig. 5b). Once more we observe
| oc (x,2) | = | om (x,2) +j 0 (x,2) |, as it is proved in
(Herman et al., 1987).

Fig. 5¢) displays the result of frequency diversity diffrac-
tion tomographys; its discussion follows equation (109).

2.3.4 Far-field Fourier inversion

If the measurement surface is located in the far-field, it is
convenient to utilize far-field data explicitly in a spatial
Fourier inversion scheme. Let us once more discuss that
for monostatic case - the- bistatic case is dealt with in
(Langenberg, 1989). The starting point is the definition of
the scattering amplitude H (f_{ , ) — ﬁ =R/R - via the
introduction of the far-field approximation of Green’s
function

2jkR +o 4+ 4o

q)smo,far(l_{ )= e4ﬂ:R f f 0 (R) e—2jk§'§'d3gr:
o 2ikR N
- R, 0). (94)

We immediately recognize that this is nothing but the
relation ‘
Hm"(ﬁ,m):ﬁO(I_(:Zkﬁ), 95)
which says that the measurable far-field scattering ampli-
tude is proportional to the spatial Fourier spectrum of the
object function on a sphere of radius 2k. Therefore, we can
dispose measured data directly in Fourier space on the
monostatic Ewald sphere. Frequency diversity then yields
the complete spectral information, which is needed for the
threedimensional inverse transform. For singular function
type monostatic equivalent sources'this procedure became
well-known as the POFFIS identity (Physical Optics Far-
Field Inverse Scattering) (Bojarski, 1981; Blestein, 1976).
The extension to the bistatic case is discussed in (Lan-
genberg, 1989).

With (95) we also have - compare (79) -

2 A
B (K, w) =T H™ (K, 0), (96)

which results in onother convenient representation of the
generalized holographic field through Fourier inversion

VP (R, 0) = ©7)

8nk
fmfmmem(ﬁ L 0)d(K-2k) e’ ERPLK,

if we switch to spherical coordinates, K, K in Fourier

space via

K-KK 98)
yielding R

LPK=KdKdK (99)

and, therefore,
PR, 0) =2 [ B (K, 0) e FERELR . (100)
Ky

Here, S* denotes the unit-sphere. Frequency diversity of
(100) with reference to (80) once more yields the far-field
Fourier inversion scheme - consult again (Langenberg,
1989) for the bistatic case -, which is not surprising, if we
realize by combination of (69) and (95)

™ (K= 24K , 0) = 47 H™ (K , 0). (101)

This equation means, that measurements taken on an arbi-
trary closed surface carry the same information as the
scattering amplitude; (101) is equally valid for the bistatic
case too.

In addition, (101) tells us that we can compute the far-field
scattering amplitude form arbitrarily taken measurements
in order to exploit the convenient multidimensional Four-
ier inversion techniques, that is to say, referring to (59) we
obtain in combination with (101)

(o] . 1 a mo r
Hm (E’w)=—4_nffsM|:anlq)S (B,(D)+

+ 2k K 0 (R )] ¥E Kas' (102)

which might be called a near-to far-field transform; notice,
in our formulation of the monostatic case there is no such
thing like an incident field, whence the replacement of

@ (R, o) in (59) by @;™.
2.3.5 Diffraction tomografy for planar measurement sur-
faces

Equation (102) together with (95) provides an algorithmic
alternative for frequency diversity or time domain back-



176 EARSeL ADVANCES IN REMOTE SENSING, Vol. 2, No. 1 -1, 1993

propagation, as given by (80) or (86), respectively. This
alternative becomes particularly attractive, if planar or
circular cylindrical measurement surfaces are considered.
A planar measurement surface Sy, say a plane parallel to
the xy-plane of a cartesian coordinate system at distance
z=d from the origin, specializes (102) and (95) to the
Fourier Diffraction Slice Theorem of diffraction tomogra-
phy. The output of the resulting algorithm is equivalent to
the time domain backpropagation scheme (SAR or SAFT),
whence the name FT-SAFT for Fourier Transform SAFT,
especially when applied to ultrasonic nondestructive test-
ing. The monostatic version is discussed in detail in
(Mayer et al., 1990).

Usually, the Fourier Diffraction Slice Theorem is derived
from the equivalent source type representation of the
scattered field, for the monostatic case (75) with (76),
applying a twodimensional Fourier transform with respect
to x and y (Mayer et al. 1990). An alternative results from
specialization of the Porter-Bojarski integral equation to
a planar surface (Herman et al., 1987). Here, we choose
the most straightforward derivation writing (102)

laY

1 o ) 6 L
H“m@,m)=—aff [az,q)smo(X,y,ZJ,(U) : +

—oY -

i 2jkf(z om0 (x',y',d,(u) }e" 2ij:de—2jk(K,x’ +K,y) dx’ dy' ,
(103)

Ay Ay
where n’ = e, the unit vector in z-direction; K, , K, and

A A
K, are cartesian components of K. Obviously we have

I’\{z= V l—K)%—I,ég &

In (104), the positive sign of the square root is involved,

(104)

because for observations on the plane z = d the vector K
points into the half-space z = 0. Defining -the factor of 2
comes from the monostatic Green’s function with & re-

placed by 2k -
Ky = 2K,
K, = 2kK, (105)
K=V 4" -K:- K2
equation (103) reads
A 1 _ika
H™ (K =-—e ™
K, o)==, e (106)
i = i mo } ot —/'Kxx’—jKyy’ ’ ’
o) J ey e ddy| o+

K [ [ ey e TS ar gy

z=d

where-the integrals are twodimensional Fourier trans-

forms of ®™ (x',y',z , ) with regard to x' and y',
namely

O (K., Ky, 2, 0) = Fyy [ O (¢, .2, 0)} . (107)

From the solution of the homogeneous equation (77), i.e.
for the half-space z = d we know

9

37 O (Ke, Ky, 7z, 0) =j K, D" (Kx, Ky, 2, ) (108)

and therefore, (103) becomes
H™ (K , w) = ﬁsze “iKd pmo (K, K, d, ), (109)

which is the monostatic Fourier Diffraction Slice
Theorem. It says, that one particular sample of the twodi-
mensional Fourier transform of data taken on a planar
measurement surface with regard to the scan coordinates
if proportional to the scattering amplitude in the direction

K, and, hence, via (95) to the object function in Fourier
A
space at the point K=2k K; notice, evanescent wave

components must be neglected because for K%+ Kf > 4k
the Fourier variable K is no longer real valued and, hence,
K cannot be defineq. Once the Fourier space is filled
through variation of K and frequency diversity, a threedi-
mensional inverse Fourier transform yields the object
function.

In (Mayer et al., 1990) we have shown explicity, that the
Born case in fact requires only one planar measurement
surface to image the complete object function, whereas
intuitively - as well as mathematically (Mayer et al., 1990)
- the singular function of a perfectly scattering surface can
only be “seen” completely from two apposite planes look-
ing at the scatterer from both sides. Even though typical
targets for microwave imaging are perfectly conducting
we do not give the derivation of the image quantity for one
measurement plane here, because the experimental ex-
amples discussed in the following destroy the “quantita-
tiveness” anyway due to aperture and bandwidth
limitations, as well as due to the offset of trasmitting and
receiving antenna, not to speak about their non-point-
source-like radiation pattern and other experimental
pitfalls.

Once more, the data obtained for the scenario of Fig. 4
have been under concern for processing with the algorithm
as given by (109) together with (95). The twodimensional
version of this algorithm is readily obtained by multipli-
cation of (109) with & (K,), which is equivalent to the
independence of all spatial quantities from y. Of course,
the input for the Fourier Diffraction Slice theorem are
complex (o = 0) frequency domain data; in order to per-
form the preprocessing as required by (87), we ignore

k% within the relevant bandwidth, and evaluate the 9/9k
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- operation in the time domain by a f-multiplication.
Therefore, we use R {d);' (x',Z =d,r) } as the basic input
for the algorithm. The output is in general a complex
valued image; it is shown as magnitude in the lower left
corner of Fig. 5. Obviously, in the essential features, it
does not differ from the output of the versions of time
domain backpropagation, but its noise level is considera-
bly lower. This is due to the fact, that (109) is an exact
inversion algorithm, i.e. it implies exact spatial filtering,
whereas (90) relies, as a heuristic scheme, on approxima-
tions.

2.3.6 Diffraction tomography for circular cylindrical
measurement surface

As demonstrated in the last Section, (102) is extremely
useful for the derivation of fast and powerful non-far field
inversion algorithms. This is not only true for planar
measurement surfaces but also for circular cylindrical
ones, as will be shown in the following.

Considerer a circular cylindrical coordinate system
r, @, z, where the surface r = a represents Sy; it encloses
the scatterer completely. The outward normal in the
source-point R’ for the integration in (102) is given by the
unit-vector e’, in radial direction; R’ itself has the follow-
ing representation

R =ae,+Z e, (110)
whereas for the direction ﬁ

K=Re+ke (111)
holds. Similary to (104) we have

k-Vi-&; 112)
furthermore

er-e,=cos(p-0) (113)

With these preliminaries we obtain from (102)

o A a 2m ps
R o) | f_m[ L S EIIR

+2jkIA(,cos(cp - )0 (a,9',2,0) }e"zjk{"K’c OS(“}"“)')“’K“#]dz’dq)’ .

(114)

Defining
K, = 2kK, (115)
K, =Vak - Kz (116)

reveals the z'-integration in (114) as a Fourier integral,
yielding

HmO(ﬁ m)__ifzn d 61110(_/ 'K (D)|
> - Am 0 arl s r,e,Rz, 1

a

+j K cos(p-¢) D (a,q ,K;,m) } ¢ “IeR e (=) do' .
(117)

The overbar indicates the onedimensional Fourier trans-
form with regard to z'.
Now we expand the monostatic Fourier transformed field

®7°(a, ¢, K:,w)into a Fourier series according to

o

asmo(a’cp’ ’KZ,(D)=2 an (Kz,m)Hrgl) (Kra)ejnq)l

(118)

whit the Hankel-functions of the first kind H,,(l); we assume
- as always - 4k22K§, and, hence, ignore evanescent
waves in z-direction. The expansion coefficients
an (K; , w) are given by

1

all(KZ7(D)=— N
20HY (K, a)

27 o
[ o (a9 K0)e ™ dy';
0
(119)

they can be computed by Fourier transforming the data
with regard to ¢’ and subsequent Hankel-function filtering
with regard to the index n. A similar Fourier expansion of
the exponential

e-j&t’oos(q)—:p‘) _ 2"”1 (Kr rr) ejm(@-‘b'—%), (120)

m=-o0

taking the r'-derivate of (118) and (120) exploiting the
Wronskian between Hankel-and Bessel-function J,, fi-
nally yields

o0

H™ (K ,m)=jln2a,,(1<z,m)ef"@-§>=

n=-—o

1
=Ewo(a,m,Kz,W), (121)
where §5° (a, ¢, K, , w) is a -filtered monostatic field,
which can again be computed using FFI’s. With the
Fourier vector

K=V4’-K? er +K: -, (122)
equation (121) together with (95) represents the diffrac-
tion tomographic imaging scheme.

As for the planar aperture we apply the algorithm (121)
to experimental data obtained by the European Microwave
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Signature Laboratory at JRC (Sieber and Nesti, 1992).
This time, we choose the data set for a twodimensional
tree model (compare Fig. 6), which was rotated in front of
fixed transmitting and receiving antennas to simulate a
circular cylindrical aperture; the copolarized VV-com-
ponent was as input data into (121) and (95). The image
in terms of | oc (x, z) | is displayed in Fig. 7; the “trunk”
and the “branches” of the “tree” are cleary recognized.

3. LINEAR POLARIMETRIC INVERSE
SCATTERING

In general, electromagnetic wave scattering must be con-
sidered from a polarimetric point of view, and the same is
true for electromagnetic inverse scattering. In particular,
recently established measurement facilities (Sieber and
Nesti, 1992; Blanchard et al., 1992) can provide complete
polarimetric information, which should be processed in
terms of appropriate algorithms. In the following, we
propose such shemes extending the previously discussed
scalar inverse scattering theory to the vector case; in doing
so, we give only the fundametnal ideas and refer the reader
to (Langenberg et al., 1992) for details.

The electric field strength satisfies the differential equa-
tion

[VV-(VV+i)I]E (Ro) sjou| J; Ro)+) (Ro)]
(123)

where I denotes the dyadic idemfactor; the inhomogeneity
is composed of the prescribed source current density
Jq (R, w), and the equivalent current density J. (R, w)
accounting for the scatterer, p is the permeability of the
host medium. Equation (123) definies a dyadic Green
function

g(l_lvg',wﬁ(y%vv)c;(g—g',m> (124)

yielding the solution

E®o)=jouf [ [ J®o0) GR-RodR
(125)

for the scattered field outside V. |_J S¢; equivalently,
js, (R, w) defines an incident field E; (R , w).
Specializing to a perfecly conducting scatterer - the case

of the dielectric scatterer is treated in (Langenberg et al.,
1992) - we have

J-R,w)=y(R)nxH(R,n) (126)

with the magnetic field strength H (R , w); insertion into

(125) yields

-

ERo)=jou[[ [n'xHR )] G R -Rw)ds,

(127)
which is the Huygens-type representation
ER,0n)= ff ]wu [P'xHR,0)]'G(R-R',w)+
+[xER,0)]- V' xGR-R,0)}dS

(128)
of the field for the boundary condition
nxE(R,w)=0forR' ES.. (129)

Linearization in terms of the physical optics or Kirchhoff
approximation requires, that surface currents were excited
as if the scattering surface was planar and infinitely large

2y (R)n x H; (R, o) on the illuminated side
on the shadow side

PR, ) - {
(130)

For an arbitrarily linear polarized plane wave in the direc-
tion Ep as incident field wave

E (R, o) =B F (0) e/, (131)
whence

lCPO(Bam)zzFZ((D)
(Kilve(R)-Bo ] - Bo [v.(R)-ki T}/ B= (132)

=F(0) e’ RI (R);

here, the vector singular function y, (R) accounts for the
shadow boundary in terms of

YR =y®R)nu(-Ki-n), (133)

where u () is the unit-step function, Z is the wave im-
pedance of the host medium.

Our goal is to determine the frequency independent quan-
tity J. (R) from appropriate, measurements on a measure-
ment surface Syr; by definition it localizes the scattering
surface, and its spatial distribution on that surface is a
quantity with physical relevance.

As before we define a generalized holographic field,
which, according to the representation (128), should be a
vector holographic field:

Wi Ro) = [ {jou[n xB®R.0)] G R-R/0)+
+[0xE(R, )] V' xG(R-R,0)]ds".
(134)

With the aid of vector Green’s theorem we arrive at the
polarimetric counterpart of the Porter-Bojarski equation
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Fig. 7 - Microwave image of the twodimensional tree model of Fig. 6 as obtained with diffraction tomography for circular cylindrical
apertures.
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o4 (R, w) -
jouf [ [ JE®.,0)GR-R,0)dR;
(135)

the upper index “E” in (134) indicates that we started from

the electric field Huygens-type representation. For k=0

we have

1
§i<§,m)=(;—;

T
Q)Zé(l(—k) (136)
and, hence, frequency diversity is again appropriate to
solve (135) within the physical optics approximation. The
particular problem arising in the polarimetric case con-
cerns the inversion of the dyadic operation on J. (R),
because the determinant of (=}i (K, o, is zero on the Ewald
sphere, therefore, sweeping Ewald spheres make it identi-
cally zero. A remedy is discussed in detail in (Langenberg
et al., 1992); it consists of combining suitable projections
of (135) onto known directions. A look at (132) reveals
that kl as well as Eo are possible eandidates for such
d]TCCthnS and, in fact, dot multiplication of (135) with
k, and Eo solves our inversion problem after some dyadic
-manipulations, as well as extensive use of singular func-
tion properties.

The result is the following;:

Jc (R) = (137)
Snfkhex@-2Rok[FeRR | *X®)]:

here, X (R) denotes the frequency integrated vector holo-
graphic field according to

1 _wER,w)e iR g (138)

f F(cu)

Equation (137) is an explicit reconstruction equation not
only for the surface distribution of the equivalent current
density, but also for the scattering geometry itself, because
Jc (R) exhibits a “distributional delta-peak” on that sur-
face; it can be numerically evaluated in various ways
(Langenberg et al., 1992). Simulations for a perfeclty
conducting sphere not only clearly demonstrate the feasa-
bility if this inversion scheme (Langenberg et al., 1992),
but also its superiority to a pure scalar inversion algorithm
applied to any component of the electric field vector.

In (Langenberg et al., 1992) we have also given an inver-
sion equation for the object function of a dielectric -
penetrable - scatterer within the Born approximation.

4. NONLINEAR INVERSE SCATTERING

Several approaches have been proposed to solve the mul-
tidimensional inverse scattering problem quantitatively,
i.e. to solve the nonlinear inverse problem for penetrable
scatterers; particularly, seriously obtained numerical re-
sults are reported in (Schiiller and Chaloupka, 1989; Wang
and Chew, 1989; Joachimowicz et al., 1991). In principle,
one always has to cope with the non-approximated Lipp-
mann-Schwinger equation, and the most straightforward
way is its discretization with subsequent iterative solution,
because it involves two unknowns, the interior field and
the object function. Even though this procedure “works”
in principle for a single-frequency-single-incident-field
set up, the result would only be the minimal norm solution
of generalized holography. Therefore, in contrast to the
statement made in (Caorsi et al., 1991), diversity is man-
datory.

In the following we give a brief discussion of our own
approach, which presently relies - in contrast to (Schiiller
and Chaloupha, 1989; Wang and Chew, 1989; Joach-
imowicz at al., 1991) - solely on frequency diversity for a
fixed plane wave incident field, where, additionally,
access to measurements is only from “one side”, i.e. we
are concerned with a planar measurement surface.

We return to the scalar formulation of inverse scattering
for the penetrable target and start with equation (33),
which we write as

D (R,w) =
JI[ @ ®.0)[8R-R)+KO[R)GR-Rw

(139)
) 1R

Here, R and R’ are assumed to vary in the volume
VD V., which is discretized by N cubic cells of volume
A’. Considering the field as well as the object function as
constant within each cell we have the approximation

®([R,0) =Y ¢g(@) I'c(R-Ry) (140)
q

OR)=Y O,Tc(R-Ry), (141)

P

where R €V, and I'c (R - R,) is the characteristic func-
tion of a single cell centered at R, € V; hence, we have

I'c(Rg-Ry) =

IS, re -

Equations (140) and (141) represent a multidimensional
pulse basis function expansion with expansion coeffi-
cients ¢4 (w) and Op; the latter ones should be the output
of an inversion algorithm: Insertion into (139) specifyng
R =R, yields

6q n

Ry)T'cR' -

(142)

R)dR =A*S,,.  (143)
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@; (Ry, 0) = 3 ¢y (o) (144)

q
[6q,,+k20qfffv GR.-R,0) IR
§ R, -Rg, 0)

From now on, we restrict ourselves to two spatial dimen-
sions, i.e. we have

=8ng ((’3)

GR-R,0)-7HI" k|R-R|).
Approximating the V,-integration in (144) by

s Ao 2m
gR0) =4 [C[H KIR-R|SR (145)

- it is Ac = A/Vr - we obtain according to (Richmond,
1965)

nAC

forR,=0

Uk Ao +
3 , (146)

g(B’HU)): i A,

k

J
2
ji J1 (k A HEY (kRy) forR, > Ac
yielding

(147)

forR,-Ry|=0

Notice, all main diagonal elements of the matrix g, 4 ()
are equal.
If we define the following [ N x N ] - dimensional matrices

Di () =[Pi (Ra, 0) [ (nx1] (148)
@ (0) =[¢g(w) ] [¥x1] (149)
g () =K [ gng (@) ] [wxn) (150)
O=[0pd:][nxN] (151)
equation (144) reads

Pi(0)=[I+g(w) 0] 2(w). (152)
Its inversion

@ (@) =[I+g(®) Q1" i(w) (153)

is a matrix formulation of the direct scattering problem for
the interior field.

Now we use the Lippmann-Schwinger equation to relate
measurements to the interior field and to the object func-
tion

o (R, w)=
-#fff OR)® R ,0)GR-R o)L R .

(154)

Discretizing as before and specifying measurements
points R = R, results in

O (R, 0) == K Y, g (0) Og gmq (@), (155)
q

which reads in matrix notation

o’-C-0. (156)
where

QM = [ DY R, 00) | (Mwx1] (157)
0=[0q]wx1) (158)
g=_k2[¢qgmq(ww)][MWxN], (159)

if we account for w-discretized frequency diversity. The
g-matrix contains the field-coefficients ¢g4, which can be
computed with the help of (153). While O is real valued,
QSM as well as € are complex, hence, (159) is twofold
overdetermined if M W=N. In addition, C is ill-condi-
tioned, and consequently, the inversion of (159) has to be
regularized. We apply the Phillips-Tikhonov tecnique,
and solve

(C-C+AD-0=C"®Y (160)

instead of (159); here, C* denotes the adjoint of C. The
regularization paramete; A is adaptively chosen for each
iteration step according to (Marquardt, 1963; Habashy et
al., 1990)

||(DM,meas_(DM,calcll

A=a | | (I)M meas | | ’ (161)

where o is an arbitrary factor, and @ M. eale i the calculated

output of (153), while @™ stands for the measured (or
simulated) data; || - || is the norm induced by the scalar
product. This way, A can be reduced for each more and
more well-posed iteration step ensuring “smoother” con-
vergence. For the first iteration, we use the incident field
to compute C in (160), i.e. we apply the Born approxima-
tion, and A is chosen “free-handedly”. The resulting O is
utilized to compute the total field in V for all frequencies
applying (153); this field and this object function enters
(156) to produce ®*““*, and a new regularization para-
meter emerges from (161). Fig. 8 illustrates the iteration
through a flow-chart.

To invert (160) most effectively, the conjugate gradient
technique is applied minimizing the least square error for
the matrix equation
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QM,mcaa
o
equ. (160) >—>  object function
A @
A [ ] O <—— equal to
< equ. (153) zero
‘ for 1st
Y Y iteration
N @M,calc
equ. (156)  EE——
A
< equ. (161)
@M,mcas

Fig. 8 - Flow-chart for nonlinear iterative inverse scattering.
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Reconstruction of a Dielectric Cylinder
k1/k2 = 2.0, ro = 2., Reflection

Ist iteration 2nd 1teration 4th 1teration

3.7

25

1.2

0.0

cross—section 12th iteration

Fig. 9 - Simulation results for nonlinear iterative scattering. A circular cylinder a is centered within a square discrezation area of size
20 A x 20 A with 20 A =3 a . In the lower right corner, the cross-section of the result of the 12th iteration is shown and compared to
the cylender cross-section in terms of the object function.
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X-0-d-a (162)
with the residual a, and
%
A=] 3C (163)
Vi H [@QMW+N)xN] .
mg”
d=| 3oM (164)
2 [CMW+N)x1]

It can be shown (Louis, 1989), that minimizing (162) with
(163) and (164) in the least square sense is equivalent to
the solution of

(A*-A+AH"-H)-0-A"-d (165)
with
=[§§) (166)
J= [CGMW)xN]
M
a-( N (167)
I oM
= JleMw)x1]

to find O; obviously, the choice H = I is just the zero-order
Phillips-Tikhonov regularizatioﬁ. N

Fig. 9 gives a numerical expample; as target, we have
chosen a circular cylinder of radius a and wavenumber
k1 = 2k, centured in the “volume” V, which is discretized
into 20x20 cells, and 20 frequencies within the interval
/500 < ka < /8 have been selected; 20 “measurement
points” are located on the bottom boundary of V, the plane
wave illuminating the cylinder comes from that “surface”
as well. Simulated data emerge from an eigenfunction
expansion. Fig. 9 displays the results of various iterations
in terms of the magnitude of O normalized to its own
maximum for the iteration under concern; we have chosen
a. = 2. Obviously, the inversion procedure converges to a
useful solution. Notice, frequency diversity alone and the
very constrained measurement surface represent a highly
ill-conditioned setup, and, therefore, we judge the results
as promising for further investigation.
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