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ABSTRACT

The use of polarisation in radar scattering and imaging has
been studied by many authors and in this paper we review
recent developments in the use of polarimetric tecniques
in imaging for remote sensing applications. We consider
two main applications, the use of optimum polarisation
theory in polarimetric synthetic aperture radar (POLSAR)
and the use of multi-polarisation imagery in ultra wide
band (UWB) radar systems. We present results from
analysis of SAR data and from a ground proibing radar
system to support the techniques outlined.

INTRODUCTION

In this paper we review recent developments in the use of
multiple wave polarisations for the construction and inter-
pretation of radar images. We consier two main applica-
tion areas; the exploitation of full scattering matrix
information in Synthetic Aperture Radar (POLSAR) sys-
tems and the use of polarisation in time domain processing
of ultra wide band (UWB) radars. The former are charac-
terised by a low fractional bandwidth transmitted
waveform and offer high spatial and range resolution
(typically of a few meters) fully coherent scattering matrix
data, which is used in remote sensing applications such as
hydrology, forestry and sea ice monitoring [1]. The availa-
bility of such data has lead to interest in processing
schemes which best utilise the full scattering matrix infor-
mation. These techniues fall into two categories; the use
of multiple transim/receive antenna polarisatiions for the
generation of feature vectors for classification [2] and the
use of optimum polarisation theory to maximise or mini-
mise the return from specific target features of interest [3].
While the former are easier to implement, and have been
successfully applied to remote sensing probems, the latter
have been the subject of some controversy, particularly in
the case of distributed targets such as vegetation and rough
surface and volume scattering [4]. For this reason we

concentrate on the latter and outine applications of the
techniques to POLSAR data obtained from JPL SAR
images. We use these results to outline potential difficul-
ties with the interpretation of optimum polarisation data
and suggest alternative processing techniques of use in the
full exploitation of POLSAR image data.

The use of polarisation in ultra wide band (UWB) time
domain radar imaging is a relatively new development and
follows the empirical observation that linearly polarised
time domain signals contain polarisation dependent infor-
mation. We present experimental measurements from a
remote sensing ground probing radar (GPR) to support this
idea.

From these observations, we concude that the simul-
taneous measurement of co and cross linearly polarised
signals can be used to generate correlations for the extrac-
tion of broad band signals form noise and the reconstruc-
tion of target geometry and shape. These UWB
applications are distinguished from conventional micro-
wave imaging by the use of ultra wide band signals, which
not only have a large fractional transmitted bandwidth, but
also contain frequency components which span the full
range of target scale features. The received signals from
such radars can be very complex, but by observation
directly in the time domain, various canonical features of
the target can be extracted using simple time gating tec-
niques.

While direct time domain measurements based on sam-
pling technology are now possible with picosecond sam-
pling resolution [5], the detection of such signals in noise
poses new problems for receiver desing. In this case it is
often advantageous to employ hybrid frequency/time sig-
nal processing, the general nature of which has recently
been unified using the concepts of wavelets [6]. When
combined with polarisation processing, this leads to a
generalised concept of Huynen parameters [7] for target
detection and identification. In this paper we consider one
class of such processing techniques and use simulations to
show how they may be used to improve detection of
features in ground probing radar applications.
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1. OPTIMUM POLARISATION THEORY FOR
POLSAR SYSTEMS

There are two main classes of optimisation methods in
radar polarimetry; single feature optimisation and statical
target optimisation [4]. The two classes are distinguished
by the type of target descriptor required. In the former the
target is typically a localised scattering centre such as a
specular surfaces or edge scattering return. In such cases
target scattering is fully characterised by a 2 x 2 complex
scattering matrix [S] [3]. For backscatter this matrix is
symmetric and can be transformed into an arbitrary com-
plex orthogonal base a unitary matrix transormation. It is
well known that in one such base the matrix is diagonal
[8] (note that this is true for any [S], the only constrain
being that the matrix is complex symmetric). These two
ortogonal polarisations are termed XPOL nulls as they
represent a pair of orthogonal antenna polarisations for
which the scattered wave has zero cross polar component.
Together with a pair of copolar nulls (COPOL nulls), a
pair of crosspolar maxima and two stationary phase points
we arrive at a set of eight optimum polarisations for a
general [S] matrix [8]. These polarisations are closely
related to symmetry properties of the target and hience can
be use for classification and identification of scattering
centres. They have been investigated by many authors and
in particular, when mapped on the Poincaré sphere, they
form a geometrical construct known as the Polarisation
Fork [9].

For example, the scattering matrix for backscatter from a
small ellipsoidal particle is of the general form

A sin® & sin 0 cos 6
A sin® § cos® 0 + Sp

A sin’® § sin” 0 + Sp

A sin” & sin 0 cos 0

[S]-

where 0 is the canting angle of the particle, 6 is a projection
angle between the major axis and incident ¥ vector and
A = (Sa - Sg) where S4 and Sp are the complex scattering
coefficients for illumination parallel and perpendicular to
the principal axes of the particle (these are functions of the
permittivity and dimensions of the particle). This matrix
be re-expressed in the form

(5]= cosB sinb ]| Sz 0
-sinBcosO || 0 S4cos®d+Sgsin®d
cos 0 —sin O
sin® cos O

which shows how the canting angle determines the XPOL
nulls (variation of the XPOL inclination angle can then be
used to map variations in canting ange of the particle). The
COPOL nulls are obtained from the ratio of eigenvalues
of [S] and hence depend on the material properties and
ellipticity of the particle [10]. Such an approach has been

successfully applied to high resolution microwave images
generated for canonical targets in a laboratory environ-
ment [11], but the study of natural targets requires and
alternative approach to the optimisation problem to which
we now turn.

The second class of optimisation theories apply to targets
which require a stochastic description. Such classes arise
often in SAR applications where, despite the fact that the
resolution cell is only a few metres on side, it still contains
a large number of scattering centres or a small number of
centres which move over the finite time period required
for measurement of the scattering matrix. In this case the
individual [S] matrix measurements must be considered
samples of a stochastic process and second order statics
used to represent the target. Examples such as radar scat-
tering from rough surfaces, vegetation, forestry and hy-
drometeors all fall into this category.

There are three main formulations of target scattering
based on this stochastic model, the 4 x 4 real Mueller or
Stokes refection matrix [M], the 4 x 4 Hermitian covari-
ance matrix [C] and the 4 x 4 Hermitian Coherency matrix
[T]. It is important to realise that in this case the optimisa-
tion procedure is more complicated, there being several
more parameters available for optimisation and the matrix
algebra involves 4 x 4 matrices in place of the 2 x 2
scattering matrix formulation. Cloude [4] has presented a
classification of such procedure and here we concentrate
on three important consequences of this analysis for the
application of optimisation methods to radar images.

1.1 Target Decomposition and Optimisation Theory

Figure 1 (a) shows the copolar received power for back-
scatter form an ellipsoidal particle with
Sa=3,8p=1and=30°, plotted as a function of antenna
polarisation ellipticity (Tau) and inclination angle (Theta).
We see that there are maxima and minima as expected
from the single feature theory. In contrast, figure 1 (b)
shows the copolar power from a distributed target, in this
case obtained from a JPL. SAR image of San Francisco
parkland using the POLTOOL software package. The
Mueler matrix [M] and coherency matrix [T] for this target
are given by

1.000 -0.1401 0.0477 0.0105
[M]=|" 0.1401 0.5424 0.0165 - 0.0523
0.0477 0.0165 0.3685 0.0588
0.0105 -0.0523 0.0588 0.0890
[T]=
0.4555 —-0.0701 + 0.02947 0.0239 + 0.0261 i
-0.0701 - 0.0294: 0.3157 0.0082-0.0052i
[ 0.0239-0.0261¢ 0.0082+ 0.0052i 0.2288
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Fig. 1(a) - Copol power for ellipsoid at 30 degrees.

Fig. 1(b) - Copol power for SAR image of San Francisco
Parkland.

The coherency matrix has eigenvalues A = (1, 0.580,
0.448) which displays the eigenvalue spectrum charac-
teristic of a distributed target.

Many authors have studies such plots and noted the fol-
lowing general features [12]; although there are local
maxima and minima, the nulls o not fall to zero for
distributed targets. There appears a pedestal which bounds
the minimum copolar signal power. Similarly, for dis-
tributed targets the degree of polarisation of the scattered
wave depends on antenna polarisation. This is shown in
figures 2 (a) and 2 (b) for the two targets considered above.
Note that the degree of polarisation is constant for the
ellipsoidal particle but varies with antenna polarisation for
the distributed target. This has lead some authors to caste
the optimisation problem in terms of the maximum degree
of polarisation rather copolar power [13].

The above anaysis has lead to the suggestion that the

Fig. 2(b) - Degree of Polarisation for Copol Signal from
Ellipsoid.

copolar power variation might correspond to a single
feature scattering matrix on top of a ‘random’ component
represented by the pedestal. If this were the case then the
single feature optimisation procedure could be applied to
the ‘equivalent target’ so removing the need to consider a
more general optimisation theory. This problem has been
considere under the more general topic of target decom-
position theorems as first developed by Huynen [14] and
discussed at a recent NATO workshop on radar
polarimetry [15]. In such theories we can represent a
general target € as the noncoherent combination of up to
four single matrix components; weighted by the eigen-
values of the target coherency matrix as [15]
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where the [ S; ] are obtained from the eigenvectors of the
coherency matrix and A; are the corresponding eigen-
values.

The expression for copolar power may be expressed in
terms of a 6th order polynomial in the complex polarisa-
tion ratio of the antenna [4] (similar polynomial expres-
sion may be derived for optimisation of the cross polar
power or degree of polarisation signatures). It then follows
from the target decomposition theorem that the coeffi-
cients of this polynomial are given by the weighted sum
of contributions from each of the four targets. For this
reason the optimum polarisation states do not correspond
to those of the dominant target component (given by the
eigenvector corresponding to the largest eigenvalue of the
coherency matrix and this has two important implications
for the interpretation of optimum polarisations for dis-
tributed targets:

a) The optimum polarisations for distributed targets are
obtained from a combination of all four target components
and hence are not clearly related to dominant scattering
mechanisms in the target. Hence any interpretation of
these states in terms of physical properties of the scattering
volume is difficult. A better approach would be to extract
the null states of the dominant eigenvector, as these are
related to dominant scattering components, such as aver-
age canting angle for a cloud of ellipsoidal particles [16].

b) The extraction of a single scattering matrix plus noise
plateau is not possible for the general optimisation process
due to the possibility of four distinct eigenvalues for the
coherency matrix. This means that in general, the copolar
maxima will not be orthogonal, as they are for single
feature optimisation, and that the Huynen fork the repre-
sentation cannot be used for such targets. Thus the startegy
of replacing a distributed target optimisation by a single
feature plus noise pedestal is not generally possible.

1.2 Iterative Techniques and Polynomials in Optimisa-
tion

As discussed above, the optimisation process for dis-
tributed targets generates a 6th order polynomial equation
for the unknown complex polarisation ratio. There are two
main methods for finding the optimum states from this
equation [4]. In the first we can use root searching algo-
rithms to estimate the six complex roots. Alternatively we
can use iterative techniques such as Newtons method to
converge on the root given a suitably accurate initial
estimate. The main problem with the former is that finding
the roots of high order polynomials can be an ill-posed

problem, with large errors occuring in the determination
of the roots for small errors in the polynomial coefficients.
The second technique employing iterative methods relies
on good initial estimates for convergence. Such estimates
can be provided by using the null states for the dominant
eigenvector as discussed in [4].

1.3 Contrast Optimisation Algorithms

As an alternative to finding the optimum polarisation
states for a target in isolation, several authors have sug-
gested the alternative strategy of optimising the contrast
between two targets as a more suitable parameter for
applications in remote sensing. Initial work in this area
was performed by Ioannidis and Hammers [17] using the
Mueller matrix for two target classes. More recently
however, there has been proposed a technique based on
the target covariance matrices for the two targets [18]. In
this method the optimum contrast states are generated
from the eigenvectors of a matrix obtained as the product
of the two class covariance matrices and the optimum
contrast rarios are given by the corresponding eigen-
values. Unfortunately, this technique provides a bias to
polarisation states on the Poincaré sphere [19] and hence
is not guaranteed to provide optimum contrast, nor does it
provide optimum states which bear any physical signifi-
cance to the dominant scattering process. Such contrast
algorithms must then be used with great care.

To illustrate the above features and reinforce their appli-
cation to remote sensing, figures 3 (a) and (b) show
copolar images obtained from JPL SAR data of Alcatraz
island. In figure 4 (a) we choose a transmit polarisation
which is a COPOL null for the dominant eigenvector of
the coherency matrix of the ocean (obtained by averaging
over a number of ocean pixels). This optimum polarisation
state corresponds to the dominant specular reflection
characteristic for returns from the ocean at high angles of
incidence. Here we see very good contrast between the
island and ocean. Figure 3 (b) on the other hand shows the
same image obtained using the XPOL null for the sea
return (again obtained from the dominant eigenvector). In
this case we see much more detail of the ocean backscatter
and can see features not apparent in the COPOL image.
The maximum eigenvector method is successful in this
case because the signals from the ocean are highly corre-
lated and the covariance matrix has a clear dominant
eigenvalue. Clearly we can use such processing to enhance
features of interest in SAR images and to improve the
contrast between target classes.
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Fig. 3(a) - Copolarised SAR Image of Alcatraz Island usign COPOL Null of Maximum Eigenvector.
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Fig. 3(b) - Copolarised SAR Image of Alcatraz Island using XPOL Null for Maximum Eigenvector.
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2. PROPAGATION OPERATORS FOR SAR
IMAGE ANALYSIS

Above we considered the application of optimum polarisa-
tion theory to SAR imaging. Here we consider a matrix
differential calculus for analysing the change in polarisa-
tion behaviour of such images. This could be used to
identify boundaries between different polarimetric targets
in an image and for the classification of image texture
based on complete scattering matrix information.

The classical calculus for determining changes in polarisa-
tion was developed by Jones for light propagation in
crystals. This calculus is governed by a differential [N]
matrix defined by [16].

3l vys) [N]=[‘”rj

Y+id

a-f

where [N] is of the general form shown, for
a,P,y,andd all complex. These parameters are inter-
preted as generalised wave propagation factors and hence
describe the dynamic behaviour of the wave as it pro-
gresses through the medium.

This approach has been generalised, first to deal with the
4 x 4 Mueller calculus and most recently to the case of the
coherency matrix [16]. Whereas for the Jones calculus
there are 8 elementary types of dynamic behaviour
governed by the complex numbers o , f,vand d, in the
case of the coherency matrix there are potentially 16
different types of behaviour. However, by restricting at-
tention to changes in the dominant eigenvector for back-
scatter only, it has been shown that there are 8 types of
dynamic behaviour governed by the 8 Gell-Mann matrices
from quantum mechanics [20]. For example, we can
generate changes in target orientation angle by using the
following basis matrix (I') and matrix exponential map-

ping

y—ié]

0 0 0 1 0 0
I'={0 0 i{|=exp(al)=[0 cosa -sina
0 -:i0 0 sina cosa

This can be used to analyse experimental scattering matrix
data by projecting measared [S] values into the eigenvec-
tors of propagation operators. Note that by doing this we
can ‘select’ to view parameter variations across a field of
view, even in the case of multiple parameter dependency.
To illustrate, consider the computer simulated SAR image
shown in figure 4. Here we assume a stochastic target
model which models the individual pixel matrices accord-
ing to a statical distribution. We assume however that the
pixels have a high degree of polarimetric coherence and
contain a correlated pattern of preferred orientation such
that the dominant eigenvectors of the pixel coherency
matrix is of the form given for ellipsoidal particels.

Fig. 4(a) - HH SAR Image of Oriented Scatterers with Random
Perturbations.

Fig. 4(b) - SAR image of Phase of Projection of [S] onto Rotation
Eigenvector.

To illustrate multiple parameter dependance, we let 9,
S4 and Sp vary randomly from pixel to pixel. The result for
a synthesised HH scalar image is shown in figure 4 (a).
Here we cannot detect the correlated orientation angles as
they are masked by fluctuations caused by the other three
parameters. However, by projecting the pixel matrices
onto the eigenvectors of I', as given by the columns of the
matrix [E] shown below, and forming an image from the
phase of this projection we obtain the image shown in
figure 4 (b).

001

[E]=]i 10
1:10
Note that we can now clearly see the spatial correlation of
orientation angles hidden in the image, which in this
simulation was pre-arranged in the form of a figure X.
This example shows how, by projecting [S] matrix data
onto eigenvectors of propagation matrices such as I, we
can examine spatial correlations not apparent in conven-
tional scalar images.
The success of this method relies on nowledge of the
eigenvectors of propagation matrices, all of which can be
generated using group theoretical ideas borrowed from the
quantum mechanics literature on Lie groups [20].
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3. ULTRA WIDE BAND RADAR TECHNIQUES

In the last section we considered the use of polarisation
information in SAR imaging. Here we consider how
multi-polarisation imaging can be used in ultra wideband
(UWB) radar techniques. Such radars are characterised by
two important features: the effective bandwidth Af of the
transmitted waveform is large compared to the centre
frequency fc. We describe this fractional bandwidth by a
parameter u as shown below

_Af

fe

For UWB applications we deal with waveforms for which
u>1.

Secondly, the scattering object has dimensions which rep-
resent widely different scales to the incident signal i.e. the
object responds to low frequency, resonant and high
frequency components in the incident wave. It is important
to realisc that all three components are excited simul-
taneously in UWB radar applications. For the purposes if
imaging this is important since the low frequency infor-
mation is used to image global structure of the object while
the high frequencies offer fine detail on scattering centres.
This is in marked contrast to conventional microwave
imaging radars which provide only high frequency infor-
mation on localised scattering centres. Note that while
spatial image resolution is related to absolute bandwidth,
UWRB radars are characterised by a large fractional band-
width u.

The design of systems to employ such signals poses severe
problems in three main categories: the generation of high
transmitter power so that the signal to noise ratio in the
receiver is adequate for band detection; the requirement
for design of UWB antennas to faithfully transmit such
signals and finally, the design of broad band receivers to
detect weak signals against noise.

The first of these can be overcome by using a swept
frequency source with pulse compression to simulate the
effect of an UWB pulse. Alternative and simpler tech-
nology is emerging from the high pulse power community
[21] and can be used to generate pulse waveforms directly.
The second problem of antenna design is more serious. It
is fundamentally difficult to design directive broad band
antennas with an effective impedance match across the
band of an UWB radar. Consequenty most UWB systems
employ one of only a few antenna designs: resistively
loaded dipoles are commony employed but they are not
directive and have power limitatioins. Other antennas
include biconic antennas, TEM horns and fins. The prob-
lem of receiver design can be met by employing a conven-
tional superheterodyne receiver combined with a swept
frequency source, but the requirement for coherent

w

measurements across a wide band leads to increased com-
plexity, expense and long measurement times.
Alternative and simpler technology is now available for
measurements directly in the time domain using fast sam-
pling technology [5]. This can be based on repetitive
sampling techniques which require a high PRF, or on
single shot sampling systems, both of which can be used
to make measurements on picosecond time scales. Such
methods can be used to improve the signal to noise ratio
through averaging and correlation techniques. The tech-
nology underlying UWB radar has recently been reviewed
in a SPIE publication [21] and here we concentrate on two
important topics: the use of hybrid time/frequency analy-
sis for imaging based on UWB signals and the use of
polarisation for UWB imaging.

4. ANALYTICAL TECHNIQUES FOR UWB
RADARS

There are three main techniques used for a description of
UWB waveforms. The concept of analytic signals used in
quasi-monochromatic analysis can be extended to permit
a complex representation of UWB signals, but the theory
quickly becomes unwieldy and offers little insight into the
mechanisms of UWB radar scattering. This is mainly
because such waveforms are dominated by time discon-
tinuities, the representation of which in the Fourier
domain is difficult. Such models represent time signals in
the form

AWexpli(oct+e)]=r@)+is()

where the signals r(t) and s(t) are related by a Hilibert
Transform [22]. In many UWB applications however
there is no clear concept of a carrier frequency w. modu-
lated by an envelope as implicit in the analytical signal
model. For these reasons such an approach is generally
only useful for narrowband signals wen u < 0.5.

A second approach to modelling UWB signals is to use
direct time domain techniques. Such analysis is based on
direct time domain analysis of Maxwells equations and
focusses on the characterisation of time discontinuities in
the UWB signal. However, the treatment of polarisation
in the time domain is difficult: it is easy to generalise the
concept of orthogonal linear polarisations, but the gener-
alisation of orthogonal elliptical states is difficult.

As an example of the use of direct time domain techniques,
consider the well known Kennaugh-Cosgriff inverse scat-
tering identity relating the backscattered impulse response
of a target to its silhouette area function [23]. This approxi-
mation is based on physical optics and, for a sphere, leads
to the impulse response approximation shown in figure
5(a). Note that there are two important time discontinuities
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Fig. 5(a) - Physical Optics Impulse Response of Metallic Sphere
radius r.
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Fig. 5(b) - Impulse Response for Metallic Sphere from Mie Series
Calculations.
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Fig. 5(c) - Measured Impulse Response for 30 cm Diameter
Sphere.

which generate the form of this response, a geometrical
optics specular return from the front of the sphere (which
generates the delta function on the front edge of the
response) and the shadow boundary assumed in physical
optics which generates the sharp cutoff after 2r/c seconds.
To extend this approximation, figure 5(b) shows the im-
pulse response obtained from Fourier transform of Mie
series data for the sphere. Note that the specular flash is
present together with a second discontinuity, a creeping

wave contribution not predicted by the physical optics
approximation. Figure 5(c) shows the results of an experi-
mental measurement of radar backscatter from a 30 cm
diameter metallic sphere using a radiated impulse
waveform of 120 ps duration. Note that the specular flash
and creeping wave contributions are clearly visible, to-
gether with an artifact at round 4ns which is due to reflec-
tions from the sphere support. The advantage of time
domain techniques is that we can identify such responses
by direct inspection of the signal. The interpretation of
these phenomena in the frequency domain is very difficult.
Recently there has been much interest in the use of coher-
ent states or wavelets for the representation of nonstation-
ary transient waveforms [24]. Such analysis has been
applied to seismic data and speech waveforms and has
recently been proposed for application to UWB radar data
[25]. In this case the advantages of transform techniques
are combined with the resolution of discontinuities inher-
ent in the time domain. This combination is provided by
the use of basis functions which are localised both in the
time and frequency domains, hence the concept of a wave-
let (contrast this with the Fourier basis wich are of infinite
extent in the time domain and localised only in the
frequency domain). Such basis states can be generated
from a ‘mother’ wavelet using group theoretical con-
siderations of transformation under scale and translation.
The two main classes of coherent states are those
generated from the Weyl-Heisenberg group (which gener-
ates localised wave packets as basis functions) and wave-
lets, which are generated from the affine group of
translations and scale change [26].

In this paper we consider the simpler class of Gabor waves
for which the basis functions are one sided damped ex-
ponential waves [27]. In this representation we can ex-
press an arbitrary time waveform y(t) in the form

@

y(t)=2 Congt-no)exp[i2numpBt]

mpn=—x

where the Cp, are complex coefficients, g(t) is a window
function and a represents a change in time scaling of the
waveform (usually we assume a 3 = 1). As an example of
how such coefficients can be used in radar imaging, con-
sider figure 6(a) which shows the measured UWB radar
response of a ciruclar cylinder viewed end on and illumi-
nated by an impulsive waveform of 120 ps width. Note
that the front and rear of the cylinder are clearly located
as nonstationary signals in the time domain response,
Figure 6(b) shows the Gabor spectrum for this signals.
Two components can clearly be identified with the front
and rear of the cylinder. To see how such waves can be
used in polarisation analysis of UWB signals, we now turn
to consider polarisation measurements using a ground
probing radar system based on UWB radar.
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Fig. 6(a) - Measured Impulse Response for 40 cm Cylinder.
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Fig. 6(b) - Gabor Transform of Cylinder Impulse Response.

5. APPLICATIONS OF POLARIMETRIC UWB
RADAR TO REMOTE SENSING

One of the most important applications of UWB radar is
in ground probing radar (GPR). Such systems have been
used for military applications such as mine detection for
many years but more recently there has been great interest
in applying this technology to remote sensing applications
such as archaeological surveying and hydrology. We have
used such a system for investigating the interior structure
of the mediaeval walls of York. The system uses a pulse
source of approximately 1ns duration and a pair of resis-
tively loaded dipole antennas for transmission and recep-
tion. The antennas can be made parallel or perpendicular
to receive co or cross polarised time domain signals. By

moving the radar over the surface, an image of subsurface
features can be constructed. Figure 7 shows two such
images for the York wall survey. In both cases the hori-
zontal axis represents distance along the wall and the
vertical axis is time. Note that the only pre-processing
performed on these images is to filter the radar returns and
apply a time dependent gain to compensate for attenuation
in the material of the walls. The two images are for the
same strech of wall but differ in the orientation of the
receive antenna: in figure 7 (a) the receiver is oriented
parallel to the transmitter while in figure 7 (b) the receiver
is orthogonally polarised to the transmitter. Shown in the
lower part of the figure is a schematic of the surveyed wall
geometry. Note that the arch structure to the right of the
image is clearly shown in both images. Importantly
however, the two images contain different information.
This was confirmed by combining the two signals to locate
two voids in the wall, one of which is in the top left of the
copolar image and the other in the centre of the cross polar
image. These images illustrate the importance of polarisa-
tion information in UWB imaging.

Future studies will be centred around simultaneous syn-
chronised measurement of both co and cross polarised
signals. This will permit comparison of time shifts be-
tween co and cross polarised signals which may be used
to further enhance the identification of structure in these
images and to detect objects against a noise background
using the coherent state analysis outlined above.

To illustrate how polarisation information can be com-
bined with the coherent state analysis consider the follow-
ing simulated results for the UWB radar response of a pair
of spatially separated dipole wirc antennas oriented at 45°
as shown in figure 8. This target is chosen because the high
Q wires yields an impulse response which is well matched
to the Gabor wave basis. Other structures require different
wavelet bases.

Figure 9 shows the radiated impulse response for this
target. Notice that the HH return contains an overlayed
response from both dipoles whereas the VV return con-
tains only a response from the front dipole, the rear being
orthogonally polarised. The HV signal is clearly visible
from the front dipole. We can see that the polarimetric
UWB response consist of the time shifted transient
waveforms, with different information in each polarised
channel. We can use the Gabor transform to analyse such
signals. Since the coefficients C,,; are complex, we can
then generate the generalised Huynen parameters to iden-
tify the polarimetric nature of the scattering centres [14].
Figure 10 shows the Gabor/Huynen plane for this dipole
target. Figures 10 (a) and 10 (b) show the kg and k; images
where.

kk v kk w
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Fig. 10 - Gabor/Huynen Plane for Twin Dipole Target.
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These images show the two dipoles as point scatters (this
is because the Gabor waves are well matched to the
damped sinusoidal of the dipoles). By looking at the k;
image we can see that only the rear scatterer (the horizon-
tal dipole) has a non-symmetric target component, the
nature of which we can extract from the Huynen para-
metres C, D, E and F. These are shown in figures 10 (c) to
10 (f). Note that the front target has a nonzero E com-
ponent and zero C, D and F components, indicating that it
is a linear dipole scatterer at 45°. The rear target on the
other hand has three zero coefficients with only C being
nonzero, indicating that it is a horizontally oriented dipole.
This simple example illustrates how we can combine the
coherent state analysis of time domain waveforms with the
Huynen parametric description of polarimetric targets.
Future work will be aimed at extending this formalism to
more complicated scattering elements. Note also that the
relative timing in the polarimetric signals can be used to
design a multi-dimensional matched filter for such targets
to enhance their detection in noise.

CONCLUSION

In this paper we have outlined some recent developments
in the application of polarimetric techniques in radar im-
aging. We have concentrated on two main areas: the use
of optimum polarisation theory in SAR imaging for re-
mote sensing applications and the combined use of
polarimetric information and coherent state analysis of
ultra wide band radar signals.

In the case of optimum polarisations we have shown that
great care must be used when using algorithms for the
calculation of optimum states for distributed targets. We
have outlined a better policy of applying the well under-
stood single feature optimisation theory to the dominant
eigenvector in a target decomposition of the distributed
target. We presented processed JPL SAR images to sup-
port this idea.

In the case of UWB radar imaging, we showed how such
signals can be used to extract both global and local target
information. Both types of information are required in the
case of non co-operative target identification where there
is no a priori information of the location of scattering
centres. We propose the use of dual polarisation UWB
radars for the imaging of such targets and presented some
initial results of polarimetric ground probing radar images
of sub surface features. _

We suggest that the use of coherent state analyses is
promising as a general formulation of UWB radar prob-
lems. It permits the logical extension of elliptical polarisa-
tions to broad band signals and hence generalises the
Huynen target parameters for use with UWB radars. We

presented a simple example of imaging a high Q com-
posite wire target and showed how the orientation of the
wire targets could be extracte by using Gabor wave analy-
sis and the Huynen parameters.
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