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ABSTRACT

The paper describes a method that can be used to evaluate
the importance of various aspects of the parameter retrie-
val problem in microwave radiometry. The method is
based on linear estimation theory, and allows the combi-
nation of microwave and meteorological/climatological
data. Results are presented that show the importance of an
improved knowledge of tie point emissivities (the signa-
ture of various ice types) and also the possibilities of
improving the retrieved ice concentrations by adding
meteorological and/or climatological information about
sea surface and atmospheric parameters.
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1. INTRODUCTION

The purpose of the present paper is to describe a method
by which retrievals of sea ice concentration from passive
microwave observations can be evaluated.

Algorithms and results presented in the literature, i.e.
Svendsen et al, (1983), Comiso (1983 & 1986), Swift et
al. (1985), Cavalieri & Gloersen (1984), Gloersen & Cava-
lieri (1986), so far have all been based on quite severe
approximations/simplifications to the radiative transfer
process through the atmosphere. The number of variables
describing this process has been reduced from infinity
(atmospheric profiles) to very few if any at all. Basically,
we are faced with a problem where we have a very limi-
ted number of equations (measurements) to solve for an
unlimited or at least very large number of unknowns. The
simplifications were carried out with reference to the fact
that atmospheric influence is minimal in the Arctic regions
and thus may be more or less neglected. However, the

results presented have shown that the algorithms are quite
sensitive to geophysical noise, ie. the fact that variations
in other geophysical parameters are misinterpreted as
variations in ice concentration. Cloud liquid water content,
atmospheric water vapour, wind induced surface rough-
ness and air/ice temperature (Pedersen, 1991) are impor-
tant contributors. It is therefore of great interest to be able
to include knowledge about these parameters in the retrie-
val process. As an example: if the wind speed is known
from other sources (with some uncertainty) it may be used
to improve the ice parameter retrieval because it reduces
one of the uncertainties.

The method presented in the following shows how to incor-
porate the necessary a priori knowledge in order to reduce
the number of variables to the number of equations (or
less), and allows us to quantify the importance. The method
is based on linear estimation theory which may be applied
to this non-linear problem within a limited range of para-
meters or using iterative solutions. A major result of the
method presented is the quantification of the effect of using
a priori constraints on the solution such as climatological
information about seasonal and regional variability of the
geophysical parameters. Another major result is that the
method provides the standard deviation of the best possible
solution, and a way to obtain this solution. However, as will
be shown, this solution is not easily reached in our case, but
the purpose of all parameter retrievals should be to come
as close as possible to this solution, and the best possible
solution is a good basis to compare with.

Data from the NIMBUS-7 SMMR will be used to exem-
plify the results obtained.

2. THEORETICAL BACKGROUND

The basic radiative transfer equation states that the antenna
temperature T, measured by an antenna at a satellite plat-
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form may be expressed as a non-linear function F, of a
number of geophysical parameters relevant to the measu-
rement situation

Ta (f, 0, p) = F (SST, WS, WV(z), CLW(2), Tyir(2), Tices

C,.,e..) (1)
where

SST is sea surface temperature

WS is wind speed

WV(z) is atmospheric water vapour profile
CLW(z) is cloud liquid water profile

T,i(2) is atmospheric temperature profile
Tice is ice temperature

C is total ice concentration

& is tie point emissivity

f is microwave frequency

0 is incidence angle

p is polarisation

Solving equation (1) for the geophysical parameters is an
ill-posed or under-constrained problem because several of
the unknown parameters are continuous functions of alti-
tude, z, and there are only a finite number of measure-
ments. The results presented in the following will be based
on a limited subset of these parameters, but may in prin-
ciple incorporate any number. In order to be able to sim-
plify the following calculations and use vector and matrix
algebra, the approach taken here is to approximate F with
a linear function of a finite number of variables.

T, =F(p) (2)

where T, is a vector with a finite number of antenna tem-
peratures (channels at different frequencies, incidence
angles and polarizations) and p is a vector with a finite
number of geophysical parameters. In the following bold
face letters are used to denote vectors and matrices and
superscript t is used to denote matrix transpose.

In the present example, the number of variables is redu-
cedto7

p=(SST, WS, WV, CLW. T, C, F) (3)

where SST and WS are the same as above, WV is the inte-
grated columnar atmospheric water vapour content, CLW is
the integrated cloud liquid water content, T is the surface air
temperature which is related to the ice temperature through

Te=04T+0.6SST  (SST=272K)

from Svendsen et al (1983). C is total ice concentration and
F is multiyear ice fraction.

These 7 geophysical parameters are by experience the
most important ones influencing the amount of micro-
wave radiation received at satellite altitude at frequencies
in the 5-40 GHz. range.

A couple of simplifications requires a comment: altitude
variations of the atmospheric temperature, pressure and
water vapour content are modelled as US standard atmos-
phere 1962 (Ulaby et al, 1981), whereas the cloud liquid
water content is modelled as equally distributed between 400
and 500 meters. The other major simplification is the fact that
only two ice types are considered, First-year (FY) and Mul-
tiyear (MY) and that snow cover over the ice is considered
to be always present. This imposes a serious limitation in cer-
tain parts of the year (new ice formation and summer mel-
ting), but in order to show the basic principles of the method
and to obtain further insight into the parameter retrieval pro-
blem, the simplifications are of minor importance.

The T, vector simply consists of the antenna temperatures
at a finite number of frequencies, most often at one fixed
incidence angle and at one or both horizontal and vertical
polarizations. The examples that will be presented are
based on data from the NIMBUS-7 SMMR, and in that
case Ty consists of 10 dual-polarized temperatures at the
5 frequencies 6.6, 10.7, 18, 21 and 37 GHz and an inci-
dence angle of 50 degrees.

The functional relationship F between geophysical para-
meters and microwave emission is reasonably well
known (Wilheit, 1979, Wentz, 1983, Ulaby et al,
1981+1986) and a block diagram of the implemented
combined atmosphere-ice-ocean emissivity model is pre-
sented in Figure 1.

However, such models all produce antenna temperatures
as a function of geophysical parameters whereas the pro-
blem we are facing when presented with data from a cer-
tain satellite microwave radiometer is that of inverting
the nonlinear function to produce geophysical parameters
from the measured quantities.

2.1 Linear estimation

The discrete version of our model equation (2) in matrix
terms reads

TA = Mp (4)
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Fig. 1 - Diagram showing the outline of the model complex uti-
lised in this study

where the matrix M consists of the partial derivatives of
the function F

0Ty

M. =

1

(&)

In the case where the number of independent measure-
ments is larger than the number of unknown geophysical
parameters, we may obtain a least squares solution to (4)

p=(MM)!M! T, (6)

which can be obtained if M'M can be securely inverted,
i.e. if the number of measurements are independent. In the
case of the NIMBUS-7 SMMR with 10 measurements
and 7 geophysical parameters this is generally possible.

However, the measurements of T 4; are not absolute but are
connected with a certain measurement error (error bars)
due to the stochastic nature of the thermal radiation and
due to instrument noise. This means that equation (4)
should read

To,=Mp+e (7)

where e is considered normally distributed with a cova-
riance matrix S,. Linear estimation theory now gives the
least squares estimate of p

P=(MUSI M) M, S T, (8)
and the covariance of this estimate

A

S = (Mt Sél M)-] 9

from which we get the simplest possible measure of the
uncertainty of the solution since the diagonal elements
contains the variances or squared standard deviations of
each of the estimated geophysical parameters. Notice that
this is the optimum solution, i.e. the smallest obtainable
standard deviations, the best precision.

The effect of the measurement is to map geophysical para-
meter space into T s-space, and the retrieval problem is to
map measurement space (T 5-space) back into geophysi-
cal parameter space (Rodgers, 1976). The covariance
matrix S now determines how the error bars of the mea-
surements (T,) expressed by the error covariance S, map
onto the error bars of the solution (Rodgers, 1976).

2.2 Geophysical constraints

Up till this point we have put no restrictions on the varia-
tions of the estimated geophysical parameters. However
the estimate may be further improved by the use of a priori
information (f.ex. from climatology) about the mean and
covariances of the geophysical parameters.

The way to do this is to consider the a priori information
as another set of measurements of the unknown parame-
ters with mean value py and covariance S,

The way to combine such two sets of estimates of an unk-
nown quantity is to take a weighted average of them, with
the reciprocal of their covariances as weights. The resul-
ting covariance is
Q 1 1)-1
S=(S; +Sp) (10)
where Sp is the covariance of the parameters estimated
solely from the radiometer measurements, i.e. (9). Inser-
ting (9) for Sp in (10) leads to

S =(S;l + MtSI M)t (1)
The estimate of p is
P=(S;t+ S (S po + Sit p) (12)
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where p; is the estimate based solely on the radiometer
measurements (8). Inserting (8) in (12) and rearranging we
obtain the following expression for the estimate

D=8 (S; po+ M'SI T, (13)
where S is given by (11). Note that because of the nonli-
nearities, the solution (13) must be obtained by iteration
and the matrix M must be evaluated at each step. This is
equivalent to saying that the relative importance of the
various geophysical parameters are different at different
ice concentrations, i.e. wind is important at low but not at
high ice concentrations etc. This is also the reason why the
following investigations of (11) are carried out at 4 points
in the parameter space. Also, the use of equation (13)
requires a model which is absolutely calibrated with res-
pect to the given instrument, whereas only relative cali-
bration is sufficient for the evaluation of (11). The imple-
mentation of (13) could be the subject of a later
investigation.

2.3 Emissivity variations

In a previous study (Pedersen, 1991) it was concluded
that the most important factor limiting the performance of
ice concentration and ice type algorithms is regional and
seasonal variations in tie point emissivities.

The way to quantify this effect is to consider the tie point
emissivities, e,, as unknown parameters to be estimated by
the retrieval process along with C,F,.SST, WS, etc.

The a priori knowledge consists in this case of mean
values, which are the tie points, and standard deviations,
which represent the uncertainty.

The partial derivatives are computed from intervals of
0.02 around the tie point values

OT _Tai-Ta (14)
de! 0.02

and the covariance matrix is constructed from the follo-
wing rules:

- Diagonal elements are the specified variance of the tie
point emissivities (typically 0.05% to 0.01?), the same for
all channels.

- Off diagonal elements are 0 (zero), considering the emis-
sivity variations to be uncorrelated. This corresponds to
a worst-case situation (Rodgers, 1976).

Thus, the inclusion of the emissivities as unknowns
increases the number of unknowns to 27, and disables any
solution that does not incorporate some kind of a priori
constraints (the types described in equation (6) and (8))
because we now have more unknowns than measurements
from a 10 channel radiometer.

3. DATA SETS /MODELS

In order to use the theory described in the previous sec-
tions, a number of data sets are necessary. Looking at
(11) the quantities on the right hand side of the equation
are:

M the matrix of partial derivatives

S, the covariance matrix of the geophysical parameters
P t=

S. the measurement error covariance matrix

and they are all needed in order to find the covariance of
the estimated geophysical parameters from the optimal
retrieval method. The following sections will present a
number of examples of results from this equation using
various right hand sides, and here the individual elements
are presented.

3.1 Matrix of partial derivatives

The matrix M is computed using a set of models of the
microwave emission from an ocean/ice surface and for the
transmission through the atmosphere. The model func-
tion is described in equation (1) with the addition of 20
emissivities to the vector of parameters. Thus, at a certain
microwave frequency, polarization and incidence angle,
the apparent temperature may be computed as a function
of sea surface temperature, wind speed, integrated colum-
nar water vapour and cloud liquid water, air/ice tempera-
ture, ice concentration, multiyear ice fraction and tie point
emissivities (FY and MY-ice)

The partial derivative of T, with respect to a certain of
these parameters p; is now estimated by keeping all para-
meters constant except p; and computing T4 at two (close)
values of the desired parameter.

Table 1 lists minimum, maximum and default values for
each of the geophysical parameters.
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Table 1 - Parameter intervals used for the computation of
partial derivatives. The default values are the values taken
by the parameters when one of the others is being varied.

Minimum Maximum Default

SST °C -1.75 2.25 -1.75

WS m/s 5.0 10.0 8.0

Water vapour cm. 0.2 0.8 0.4
Air temperature °C -20.0 -10.0 -15.0
Cloud liquid water 107 cm 0.0 20.0 0.0

The matrix of partial derivatives is evaluated at two points
in FY-MY-Water space because of the nonlinear nature of
the problem, i.e. the partial derivatives varies with for
instance ice mixture and concentration. The two points are
given in Table 2, and they allows us to evaluate parame-
ter retrievals in each of these two situations, low ice
concentration and high ice concentration.

Table 2 - The two combinations of total ice concentration (C)
and multi year ice fraction (F) at which the matrix of partial
derivatives has been evaluated for the present study.

Total ice concentration Multiyear ice fraction
10% 50%
90% 10%

Open ocean

First year ice

3.2 Covariance matrix of the measurements

This matrix is the full 10-dimensional covariance matrix
of the error bars of the measurements. By nature the micro-
wave emission is a noise signal with a certain mean value,
and the way to get a good estimate of this mean value is
by integrating over a long time. System design in scanning
satellite systems sets an upper limit to the time available
and also instrument noise adds to the uncertainty of the
measurement. Information about instrument behaviour in
this sense is typically available as the system sensitivity
at each of the 10 channels. The off-diagonal elements of
the S, matrix are zero, since the measurement errors for the
different channels are independent. The noise covariance
matrix used in this study has all diagonal elements set to
(0,5K)?, corresponding to what is obtained from the spa-
tial averaging of the NIMBUS-7 SMMR CELL data.

3.3 Covariance matrix of the geophysical parameters

The Symatrix represents the a priori knowledge of the
geophysical parameters influencing the retrieval. They
may vary regionally and seasonally but in the examples
presented here the matrix S, is estimated from a combi-

nation of near simultaneous meteorological surface and
radiosonde observations and SMMR-derived ice parame-
ters during a one year period. However, different combi-
nations are used in order to be able to evaluate various
levels of a priori knowledge.

Sea surface temperature, wind speed and air temperature
are conventional measurements, integrated columnar
water vapour is derived from radiosonde measurements.
Cloud liquid water content is the most difficult parame-
ter to estimate in this context where we want to know it
also in periods with ice cover where it cannot be derived
from SMMR data. The method used to obtain a reasonable
CLW dataset corresponding to the other observations has
been to use SMMR derived information (by an algorithm
published by Wilheit & Chang (1980)) and setting CLW
to zero when ice is present. This was considered the best
that could be done with the available information. Clouds
above an ice cover generally consists of lower water
content (ice particles) than over the ocean. However, near
the ice edge the description is probably not adequate.
Total ice concentration and multiyear ice fraction are
derived from SMMR data using an adjusted version of the
algorithm presented by Cavalieri and Gloersen (1986).
Also, note that the matrices presented actually are only the
upper left 7x7 elements of the 27x27 covariance matrices
of the unknown parameters. The other 20 parameters are
the tie point emissivities which are considered uncorre-
lated both among themselves and to the 7 geophysical
parameters. This represents a worst case situation, since
any known off-diagonal element will improve the retrie-
val (Rodgers, (1976))

Two datasets were used in the analysis, one from Jan
Mayen, and one from Bear Island. The correlation matrices
are quite similar even quantitatively, so a combined one
representing typical sub-Arctic conditions (Greenland
Sea) was produced by a combination of the two. The resul-
ting correlation matrix is shown in Table 3, and the cova-
riance matrix in Table 4. '

Table 3 - Correlation matrix found by combining the
matrices from Jan Mayen and Bear Island.

SST WS WV T CLW C F
SST 1
WS -0.2 1
wv 0.7 -0.2 1
T 0.7 -0.2 0.8 1
CLW 025 -0.1 0.25 0.3 1
C -0.5 0.1 -035 -045 -055 1
F -0.15 0 -0.1 -0.1 -0.2 0.3 1
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Table 4 - Covariance matrix found by combining the matrices
from Jan Mayen and Bear Island.

SST WS WV T CLW C F
SST 5.3
WS 23250
WV 0.8 -6.0 0.25
T 9.7 -6.0 24 360
CLW 4.6 -4.0 1.0 14.4 64.0
C -23.0 10.0 -3.5 540 -88.0 225.0
F -1.7 0 -0.3 -3.0 -8.0  30.0 250

Since the data originates from areas that are only seaso-
nally ice covered and hardly has any multiyear ice at all,
the covariance matrix is only representative for such
areas. Also notice, that it represents the whole year, but
in principle seasonal dependencies could be included as
well.

High correlations (0.7-0.8) are seen between SST, WV
and T,;, which is what would be expected from the sea-
sonal cycle of these parameters. Cloud liquid water was
expected to be in the same group with a positive correla-
tion to the others, but is seen to be substantially lower
(0.25-0.3). This may be attributed to the nature of the
CLW dataset and also to the fact that both sites (Bear
Island and Jan Mayen) are situated near the marginal ice
zone close to the track of clouds originating in much war-
mer areas. All temperature and atmospheric parameters
are negatively correlated to total ice concentration which
was also expected since ice concentration has the oppo-
site seasonal cycle. Wind speed and MY-fraction are not
correlated to any of the other parameters i.e. they vary
independently. The result for MY-fraction may be less
accurate because of the fact that the amount of multiyear
ice is very low and F therefore quite noisy. The data pre-
sented here, thus, are not representative for higher Arc-
tic conditions with respect to MY-ice.

In order to construct a dataset representative for more
variable ice conditions, the variances presented in Table
5 were produced by increasing the standard deviation of
C and F to 50% and the variances of the other parame-
ters corresponding to different levels of a priori know-
ledge. Any non-zero element represents some a priori
knowledge that will improve the retrieval (Rodgers,
1976).

Table 5 - Diagonal elements of covariance matrices corres-
ponding to the 5 different levels of 4 priori geophysical know-
ledge used in this study. Numbers correspond to standard
deviations, i.e. the square root of the diagonal elements.

SST WS wVv T CLW C F

K m/s cm K cm Y %

5 52 10.0 1.1 20 0.020 50 50
4 3.9 7.5 0.8 15 0.015 50 50
3 2.6 5.0 0.54 10 0.010 50 50
2 2.0 3.0 0.3 0.008 50 50
1 1.5 2.0 0.2 4 0.005 50 50

4. DISCUSSION

This section presents a number of examples illustrating the
usefulness and possibilities of the estimation theory des-
cribed.

Examples will be given of how the use of a priori know-
ledge about the variance and covariance of the geophysi-
cal parameters can improve the retrievals.

A subsection will quantity the effects of emissivity varia-
tions on the retrieval of ice concentration.

Throughout, two different channel combinations will be
used:

1) 37 GHz horizontal and vertical polarization (37 H+V)
2) 37 and 18 GHz vertical polarization (18 + 37 V)

A standard deviation of ice emissivities of 0.01 is used in
the investigation of a priori knowledge.

A standard deviation of 0.5K is used for measurement
noise corresponding to the CELL data.

Climatological level of & priori information is assumed
when investigating emissivity variations.

4.1 Emissivity variations

The seasonal and regional variability of the tie point emis-
sivities is an important factor limiting the ability of deter-
mining ice concentration and ice type from passive micro-
wave measurements. The purpose of this section is to
quantify the importance of such variations and estimate the
precision with which the emissivities must be known in
order to obtain a certain retrieval accuracy for the ice
parameters.
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Tie point emissivities are treated in this exercise as unk-
nown quantities to be estimated. They have a certain mean
value (the expected tie point) and are associated with an
uncertainty of et. Under winter conditions the variation in
e, is typically of the order of 0.01 or smaller whereas
values in the melt periods may vary rapidly (by more than
0.05 in a few days or even hours). Also, the regional varia-
tions of especially the multiyear signature are significant
and may easily be in the order of 0.05.

The correlation between different channels is unknown.
The emissivity variations are mainly caused by variations
in ice surface conditions and therefore must be correlated
from channel to channel. A worst case example is obtai-
ned by considering the correlations to be zero.-

Figure 2 shows the results for estimates of total ice concen-
tration. As expected the influence is strongest at high ice
concentrations, whereas it is of minor importance at low
concentrations. At high ice concentrations the standard
deviation of the retrieved ice concentration (i.e. the pre-
cision) drops drastically as the knowledge of tie point
emissivities increases. It is seen that even if we know the
emissivity of the ice within 0.02 this is still the major
contribution to the uncertainty of the estimate. The situa-
tion may be somewhat improved by including more chan-
nels in the retrieval process.

35
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..... Water [8+37 V

Fig. 2 - Standard deviation of retrieved ice concentration as a
function of tie-point emissivity variability (i.e. knowledge). Full
and dotted lines corresponds to low ice concentrations, dashed
and dash-dotted to high ice concentrations as specified in Table 2

We may conclude that it is desirable to know the emissi-
vity with an accuracy of at least 0.01 which is far better
that what we know today, in particular during periods of
rapid surface variations.

42 A priori constraints

In this section it will be considered how the retrieval of the
ice parameters can be improved by the use of a priori
knowledge of the variance and covariance of the geophy-
sical parameters.

The basic assumption here is that the solution (8) allows
for large variations in the ocean and atmospheric para-
meters and actually they will often take unrealistic values
due to the fact that we do not have sufficient independent
measurements and that the measurements are noisy. Such
unrealistic values may be negative wind speeds or unrea-
listically high wind speeds, sea surface temperatures below
the freezing point of sea water etc.

The way to limit these variations is to apply a priori know-
ledge such as climatology, and equation (10)-(13) give the
theoretical details of how to do it. We use the climatolo-
gical covariance matrix which may be derived on a regio-
nal and seasonal basis in order to take the full advantage
of more detailed knowledge. The following show how we
can improve the estimates this way, and how much know-
ledge is necessary in order to do so.

Five different covariance matrices for the geophysical
parameters have been used as described earlier corres-
ponding to the following five situations (see table 5)

1) Variances corresponding to meteorological analysis
fields (best a priori knowledge).

2) Same as 1), but with somewhat larger variances, cor-
responding to a more pessimistic estimate of the per-
formance of the meteorological analysis model.

3) Variances corresponding to climatological observa-
tions.

4) As 3) only with somewhat larger variances correspon-
ding to worse climatology or more variable conditions.

5) Worst case climatological data (guessed)!

Figure 3 shows the results of the estimations based on
different levels of a priori knowledge. It is seen that the
major effect is at low ice concentrations whereas it is of
minor importance at high concentrations. In particular
itis very important if we use the polarization algorithm
at 37 GHz. In this case it would be possible to improve
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Fig. 3 - Standard deviation of estimated ice concentrations as a
Sfunction of the level of a priori knowledge. Full and dotted lines
corresponds to low ice concentrations, dashed and dash-dotted
to high ice concentrations as specified in Table 2.

the estimation precision from approx. 15% to about 8%
if better knowledge about the atmospheric and sea-sur-
face parameters is available. But even with the 18437
GHz algorithm a substantial improvement (4% to 2%)

is at hand if we have access to reliable meteorological

analysis fields or short term forecasts to help the retrie-
vals.

CONCLUSIONS

It has been shown how the application of linear estimation
theory may improve our understanding of the nature of the
sources of errors in parameter retrieval from passive
microwave measurements.

Examples from NIMBUS-7 SMMR have been used throu-
ghout, and some of the major results are:

Emissivity variations: Very important at high ice concen-
trations.

A priori Knowledge: Atlow ice concentrations this is very
important. A major improvement may be obtained by
introducing meteorological analysis fields instead of the
previously used climatology.

The theory described does allow for evaluation of all the
important parameters as long as their effect can be model-
led. This includes the possibility of adding more unk-
nowns such as cloud height and temperature, atmosphe-
ric lapse rates etc. This is an obvious task for future
research.

The theory may also provide results about the estimation
of ocean and atmospheric parameters with or without the
presence of sea ice.
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