Resolution concerning the Tandem mission

June 8-10 an EARSeL workshop on "Topography from Space" took place at Chalmers University of Technology, Göteborg, Sweden, with approximately 50 participants. The workshop covered questions from the need for topographical information from space to optical and radar techniques and the combination of techniques. On the final day a panel discussion took place with Professor Konecny, Dr Massonnet, Professors Nüesch and Petrie, and with myself as chairman. The auditorium participated freely in the discussion with comments from e.g. Professors. Madsen, Mulder, Moccia and Prati. The need for and importance of the ERS-1/2 tandem mission was discussed with the intention to send a resolution to ESA.

It was agreed that the tandem mission would be an important and unique possibility to determine topographic properties from space.

Among areas of special interest for DEM production the Antarctic area and glacier areas such as Greenland were mentioned as examples of areas with little available information. In this case a one day delay between ERS-1 and ERS-2 would be preferred.

Updating of older DEMs was also stressed as an important application.

It was stressed that the combined lifetime of ERS-1 and ERS-2 is also very important (e.g. for studies of small movements by means of differential InSAR over very long periods) and that the number of orbit cycles for the tandem mission should be limited by this constraint. The optimal baselines should be further analysed.

The data acquisition is only the first step. Efforts should be made for the operational use of InSAR products from the tandem mission and the data should be produced without too much delay. (In the discussion the possibility for public domain software programs were mentioned and this would of course increase the number of users considerably.)
For the evaluation of various techniques for DEM production, test sites should be selected and acquisitions made routinely.

Göteborg June 15, 1994
Jan Askne
Conference organiser
(Comment: This resolution was sent to Mr. Guy Duchossois, ESA)

The EARSeL 14th Symposium ended with a common part with the workshop, which similarly opened with a common part. The common part of the symposium and the workshop is published in the Proceedings of the symposium published as
"Sensors and Environmental Applications of Remote Sensing", J. Askne editor, A.A. Balkema, Rotterdam, 1995.

COMMON PART OF SYMPOSIUM AND WORKSHOP

Wednesday, 8 June PM

es. Field		Lecture Room	Time	Chairman
Cartographic Aspects		HC 4	14.00-15.20	Petrie
K. U. Kaufmann, M.F. Buchroithner, N. Prechtel	Inst. Cartography, Dresden, Germany	New possibilit image maps us	generation and andsa-TM and	application of combined ussian KWR data
T. Toutin	CCRS, Ottawa, CA	Multisource dat metric modellin	gration with an	ntegrated and unified geo-
D. Sloggett et al.	E.O.S. Farnham, UK	CINTEX		
R. Kostka, W. Kramer	Graz Univ. Technology Austria	Maps and remot countries - the	sing in mounta ple of the Uppe	nous areas of Third World Mustang District in Nepal

9	Remote Sensing Methodology	HC 3	$\mathbf{1 4 . 0 0} \mathbf{- 1 5 . 2 0}$	Megier

V. Cappellini et al. Fondazione Scienza per Neural networks in remote sensing multisensor data processing l'Ambiente, Florence, I
L. Vasiliev Institute Geography Scaling in the fractal spatial structure of environment and impleRussian Academy, Moscow mentation for imagery interpretation
J. Hill, W. Mehl IRSA/EMAP/JRC Concepts for evaluating time series of satellite images for long S. Sommer, Ispra, I Hervas de Diego pres. by Megier
-term monitoring of land degradation processes

COMMON PART OF WORKSHOP AND SYMPOSIUM
10 WS - overview, session 10 HC 4 $\mathbf{1 5 . 3 0 - 1 7 . 3 0}$ Askne

[^0]| A Moccia | CORISTA, Naples, I | An overview of existing and future techniqes for topographic
 space observations. |
| :--- | :--- | :--- |
| G. Konecny | IPI, | |
| Univ. Hannover, D | Current status and future possibilities for topographic mapping
 from space | |
| G. Petrie | Univ. Glasgow, UK | Needs for topographic mapping in developing countries -
 Can space imagery deliver solutions? |

THURSDAY, 9 JUNE WORKSHOP

11	WS - radar methods 1	HC 4	$\mathbf{9 . 0 0 - 1 0 . 2 0}$	Nüesch

F. Adragna	CNES, Toulouse, F	SAR interferometry applied to DEM generation at CNES
D. Small et al.	R. Sensing Labs. University Zurich, CH	Geocoding of ERS-1 INSAR-derived digital elevation models

12	WS - radar methods 2	HC 4	$11.00-12.20$	Ulander

L. Gray CCRS, Canada Results from CCRS interferometric campaigns?
L. Polidori et al. Aerospatiale, Cannes, F Simulation-based assessment of the sensitivity of an interferometric SAR to small terrain changes
J.O. Hagberg, Chalmers Univ. Technology Calibration of interferometric SAR images
L. Ulander
A. Moccia et al.
Fac. Engineering, Univ. Naples, I
Twin satellite orbital and Doppler parameters for global topographic mapping

13	WS - optical methods 1	HC 4	$14.00-15.20$	Buchroithner

T. V. Vereshchaka Moscow State Univ. Applications of space information to updating and improving of Geodey and Cartography topographic maps
A. Sharov Moscow State University Three-dimensional topographic modelling of mountainous and and Graz Univ. Technology glaciated areas through Russian spaceborne photographs
14 WS - optical methods $2 \quad$ HC $4 \quad 15.50-\mathbf{1 7 . 1 0} \quad$ Vereshchaka

| J. Bodechtel et al. A.G.F. Univ. Munich, D |
| :--- | | First results of MOMS-02 data and future geoscientific applica- |
| :--- |
| tions |

P. Antonio et al. \quad CNES, Toulouse, F	Effect of acquisition and processing parameters of images on the accuracy of automatic correlation
R. Kaczynski J. P. Donnay\quad IGIK, Warsaw, Poland	Satellite image map of Warsaw in the scale 1:25,000

L. Renouard, F. Perlant ISTAR, Valbonne, F
presented on Thursday

Comparison of the SPOT DEM and the ERS

15	WS - optical and radar combined	HC 4	$\mathbf{9 . 0 0 - 1 0 . 0 0}$	Konecny

T. Toutin	CCRS, Ottawa, CA	Generating DEM from stereo images with a photogrammetric approach: Example with SPOT, airborne SAR and ERS-1
V. Kaufmann,	Inst. Applied Geodesy and	
U. Fastner	Photogramm., Graz	Some experiments on relief mapping from space using micro- wave and optical image data: looking at the badlands in southern Italy

16	WS - radar methods - future	HC 4	$\mathbf{1 0 . 3 0 - 1 1 . 5 0}$	Askne

D. Massonnet LimeS, Toulouse, F Litions to SAR interferometry due to instrument, climate or target geometry unstabilities.
S. Madsen Tech. Univ. Denmark An overview of Airborne Across-track Interferometry.

Tom Farr, D.J. Harding JPL, Pasadena \& G.SF.C. TOPSAT: The Global Topography Mission

17	WS - panel discussion	HC 4	$\mathbf{1 2 . 0 0} \mathbf{- 1 3 . 0 0}$	Askne/Buchroithner

Konecny

Massonet
Nüesch
Petrie

[^0]: Ph. Hartl
 Institute of Navigation
 SAR-interferometry with ERS-1: Basic concept and some results Univ. Stuttgart, D

