Figure 5 - Bern InSAR height map (colour cycle of length 300 m, intensity from SAR image).

Figure 6 - Bern InSAR height differences, colour saturation scale -80 m (blue) to +80 m (red), intensity from SAR image.

Figure 7 - Height difference map (Bern-Aare triangulated) Colour saturation scale from -40 m (blue) to +40 m (red), intensity from SAR image.

Figure 8 - Bern 27.11.91 / 24.11.91 Height Differences

Figure 9 - InSAR height model (Bonn 14 / 17.03.92) Colour cycle of length 100 m, intensity from SAR image.

Figure 10 - Height difference map (Bonn 14 / 17.03.92) Colour saturation scale from -40 m (blue) to +40 m (red).
Figure 12 - Visualization of Bonn 14 / 17.03.92 InSAR DEM, viewed from NE: Heights depicted as colour cycle of length 100 m, intensity from SAR image.

Figure 13 - InSAR height map (Bonn-Nörvenich 14 / 17.03.92) Colour cycle of length 50 m, intensity from SAR image.

Figure 14 - Height difference map (Bonn-Nörvenich 14 / 17.03.92) Colour saturation scale from -20 m (blue) to +20 m (red).

Figure 18 - Height difference map (Coal Mining Area 14 / 17.03.92) Colour saturation scale from -40 m (blue) to +40 m (red).

Figure 19 - Height difference map (Bonn 14 / 29.03.92) Colour saturation scale from -80 m (blue) to +80 m (red).
Figure 5 - a/ Flat earth compensated interferogram over Sardinia.

b/ Slope angle, α, derived from interferogram. The red colour corresponds to ambiguous slope angles, and the blue colour to slope angles between 0° and 7°.

c/ Slope direction, ν, derived from interferogram. The colour wheel is defined from blue ($\nu = \pm 180^\circ$) over red ($\nu = -60^\circ$) and green ($\nu = 60^\circ$) to blue again.
Figure 1 - Part of the satellite image map of Warsaw area reduced to the scale 1:50,000. Green areas appear red and dense built-up area in blue. Open fields are shown in white and yellow colours.

Figure 2 - Part of the satellite topomage map of Warsaw area reduced to the scale 1:50,000. Topographic features extracted from the topomaps are shown in white.