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ABSTRACT

This paper proposes the application of structured neural
networks to land-cover classification in remote-sensing
images (in particular, multisensor images are considered).
Purpose of our approach is to give a criterion for network
architecture definition and to allow the interpretation of the
“network behaviour”. The first result aims to avoid a cum-
bersome trial-and-error process; the latter one can be used
to obtain information about the relevance of sensors and
related bands to land-cover classification. First of all, the
architecture of structured networks is tailored to a multi-
sensor classification problem. Then, they are trained and
transformed into “simplified networks™ which allow one
to evaluate the relevance of sensors and related bands.
Experimental results on a multisensor data set related to
an agricultural area are reported. An additional experiment
on a multispectral image of a forest area is also briefly des-
cribed. Comparisons with the Bayesian classifier confirm
the effectiveness of our approach.

1. INTRODUCTION

One of the primary uses of remotely-sensed images is in
land-cover classification for applications such as agricul-
tural and forest monitoring (Townshend, 1992). Not-
withstanding the considerable potential demonstrated by
techniques for land-cover classification, improvements
are necessary to achieve satisfactory performances. The
use of multisensor images seems to be a promising direc-
tion to obtain such performances (Townshend, 1992).
Consequently, many efforts have been devoted to the
development of new approaches for the classification of
multisensor images (Luo and Gray, 1989). The interest of
applying Artificial Neural Networks (ANNs) has recently
been documented in various works. Benediktsson et al.

(1990) compared two approaches to multisource classifi-
cation based on neural networks (supervised learning by
the delta rule and by the back-propagation algorithm) with
classical statistical methods. A new neural network archi-
tecture, based on concepts from the Consensus theory,
was proposed and experimented on multisource data by
Benediktsson ef al., 1991. Bischof et al. (1992) investi-
gated the classification of multispectral images by a one-
hidden layer back-propagation ANN; they also performed
texture information extraction and post-classification
smoothing by neural processing.

Neural network approaches provide, in fact, important
advantages: no need for a priori knowledge on statistical dis-
tribution of data, intrinsic parallelism, fast classification
time, fault tolerance. On the other hand, well-known pro-
blems related to the use of ANNs are to be faced: no gene-
ral criteria for defining a suitable architecture of the net-
work, difficult interpretation of the “network behaviour”
(the so-called “opacity problem”), dependence of classifi-
cation performances on various factors (initial weights,
choice of the training set, training parameters, etc.). So far,
such problems have only been partially considered in the
literature of ANNs for remote-sensing data classification.

This paper proposes the application of structured neural
networks to land-cover classification in multisensor
remote-sensing images. The purpose of this approach is to
exploit ANNs’ advantage while solving, in the context of
the considered application, the problems of “architecture
definition” and of “opacity”.

In Section 2, we propose a class of structured neural net-
works and a criterion to define a specific architecture for
a given multisensor classification problem. The transfor-
mations applied to simplify the representation of our ANNs
in order to interpret the “network behaviour” are dealt with
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in Section 3. Experimental results are reported and dis-
cussed in Section 4. Conclusions are given in Section 5.

2. STRUCTURED NEURAL NETWORKS
FOR CLASSIFICATION OF MULTISENSOR
REMOTE-SENSING IMAGES

The proposed approach addresses the problem of super-
vised classification of multisensor remote-sensing images,
assuming that the preceding image processing steps {(cor-
rection, registration, pattern and feature extraction) have
already been carried out by whatsoever techniques. In
particular, our approach is based on multilayer feedfor-
ward networks (commonly called “multilayer percep-
trons”, Hertz et al., 1991). A novel aspect concerns “archi-
tecture definition”. It is aimed to make possible the
interpretation of the “network behaviour” (Sections 2.1
and 3.2) and to take explicitly into account the peculiari-
ties of multisensor data (Section 2.2).

2.1 Adopting an architecture based on tree-like networks

In a fully-connected layered ANN, all neurons of a layer
contribute to the input to every neuron of the successive
layer (Hertz et al., 1991). The resulting “distributed” infor-
mation processing hinders the interpretation of the “net-
work behaviour”. Therefore, we propose to adopt archi-
tectures for which the output of each neuron is fed as input
to just one neuron of the next layer, that is, tree-like net-
works (TLNs). In this way, well-separated neuron contri-
butions are used (details on the architecture of our TLNs
are given in the following Section).

The global TLN-based architecture we propose is depic-
ted in Figure 1. A multiple-input single-output tree-like
network is devoted to each class of data; the outputs of all
the TLNs are then compared by a decision block that
makes the final decision about classification. In our
approach, we train each TLN separately so that its output
provides an estimate of the posterior probability of the
related class (Makhoul, 1991). According to the Bayes
rule, we want to assign samples to the estimated most pro-
bable class; that is, we want to select the TLN with the
maximum output. Therefore, we have to adopt a “winner-
takes-all” decision block (Figure 1).

To complete the interpretation of TLN behaviour we must
also evaluate the importance of each connection with res-
pect to the network output; this aspect will be considered
later on (Section 3).
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Figure 1 - The Global TLN-based Architecture

2.2 Tailoring the architecture
to a multisensor classification problem

According to our method, the architecture of the class-rela-
ted TLNs are all identical (Figure 1); therefore, we will
refer in the following just to a unique TLN architecture.

The operation of each TLN may be interpreted as a check on
a criterion that can be hierarchically decomposed into sub-
criteria (a similar interpretation has been proposed also in
(Krishnapuram and Lee, 1992)). In particular, each layer of
neurons in a TLN corresponds to a level of decomposition
of criteria into subcriteria. We propose that, as first decom-
position level, the global criterion checked by the output
neuron be decomposed into sensor-related subcriteria (one
subcriterion per each available sensor). Then, as second
decomposition level, each sensor-related subcriterion be
decomposed directly into elementary subcriteria, defined on
the inputs derived from the corresponding sensor (Figure 2).

Such an interpretation of a TLN notably helps the defini-
tion of a network architecture tailored to a given multi-
sensor classification problem. In fact, it defines a two-hid-
den layer architecture of the type in Figure 2. Such an
architecture is completely defined except for the number
of neurons of the first hidden layer, which depends on the
complexity of the elementary subcriteria we adopt.

The TLN-based architecture obtained in this way explicitly
take into account the multisensor nature of the problem
considered and allows one to easily configure the net-
work architecture. In particular, the information derived
from different sensors is processed separately inside sub-
nets, then combined only at the level of the output neuron.
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Figure 2 - Tree-like Network (TLN) tailored to a multisensor
classification problem (hl=hidden layer)

3. SIMPLIFICATION AND INTERPRETATION
OF A TREE-LIKE NETWORK

In this Section, we propose a technique to generate a “sim-
plified representation” of our TLNs (Section 3.1) which
allows one to interpret the network behaviour (Sec-
tion 3.2).

3.1 Simplification

Let us now consider why the weight of a connection does
not correspond directly to its importance. First, for all
possible values of the inputs to a TLN, the output of some
neurons may exhibit variations in a small subrange of
their full output dynamics; the output connections of these
neurons provide reduced contributions to the next layer’s
neurons, with respect to a full usage of output dynamics.
Secondly, the importance of a connection depends also on
the bias of the neuron the connection enters and on the
weights of the remaining connections entering the same
neuron; the presence of both positive and negative weights
makes interpretation still more difficult. Finally, dealing
with complicated mathematical functions (e.g., the “logis-
tics function”), used to describe the neurons’ response, is
not intuitive for a human being.

In order to overcome this kind of difficulties, we propose
to define a TLN to be used for classification, to train it and
then to transform the representation of such a network so
that it may exhibit the following properties:

— weights are all positive;

— the output of all neurons vary over the whole range of
their output dynamics;

— weights and bias entering each neuron are normalised to
the sum of the weights themselves;

— the neurons’ response is approximated by a linear func-
tion with saturation.

TLNs with the above properties are obtained by four pro-
gressive transformations:

i) the first step is the transformation of a generic TLN into
an equivalent one with positive weights (TLN*). We do not
apply this procedure to the weights of the connections
between the neurons of the input layer and those of the first
hidden layer, as our method does not require that these
weights be positive (Serpico et al., 1992).

ii) the second step is the transformation of a TLN* into an
equivalent network in which the output of every unit of
hidden layers is expanded to the whole range of the neu-
ron non linearity output ([0,1], in our case).

iii) normalization: it is applied to all weights and biases of
the “expanded” TLN. The result is an equivalent network
in which the weights of all the connections entering each
unit are normalized by a multiplicative factor such that
their sum be equal to a prefixed positive value N (e.g.,
N=1000). Each bias is normalized by using the same mul-
tiplicative factor as for the input weights to its unit.

The value of each normalized connection is called “Voting
Power” of the neuron which generates such a connection
(the reason for such a name will be clarified in the next
Section).

iv) Finally, to simplify the neuron non-linear function of
the normalized network, we approximate it by a function
linear with saturation to its minimum and maximum values
(i.e., 0 and 1, respectively). In particular, we utilize the
straight line that is tangent to the neuron non-linear func-
tion at the point where this function is equal to 0.5. In order
to characterize the resulting piecewise linear function
(Figure 3b), we use two parameters: the “Voting Thre-
shold” (VT) and the “Delta Votes” (AV).

The meaning of such parameters will be clarified in the next
Section. VT is defined as the value that makes the piecewise
linear function equal to 0.5; AV is defined as the difference
between VT and the value corresponding to the extremes of
the sloping part of the linear function (Figure 3b).
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The algorithms to perform the above transformations are
given in (Serpico et al., 1992). The resulting networks
constitute a “simplified representation” of the original
TLNs. They are called “Piecewise Linear Tree-Like Net-
works” (PLTNs). An example of PLTN is given in
Figure 3. Such networks are equivalent to the original
TLNs, except for the piecewise linear approximation of the
logistics function.

3.2 Interpretation

According to the above definition of PLTNSs, the behaviour
of original TLNs can be easily interpreted. In particular,
the hierarchical arrangement of criteria described in Sec-
tion 2.2 can be interpreted as a hierarchical arrangement
of committees (Roli et al., 1993).

The interpretation of input units is obvious: they provide
a coded representation of the data to be classified.

In order to interpret the role of the remaining units in the
net, we recall that inside a PLTN all weights from the
first hidden layer (hl) on are positive numbers and all neu-
ron nonlinearities are monotone increasing functions. The-
refore, first hl units provide positive contributions to neu-

rons of the second hl, which are propagated again as posi-
tive contributions to the output unit. In particular, the out-
puts of the first hl units are multiplied by the normalized
weights (W) Of the output connections by which they
are propagated, hence their contribution to second hl units
vary in the range [0,w,,.,]. Recalling that a high output
value of a network suggests the hypothesis that a sample
may be assigned to a given class, we say that a unit may
assign a number of votes in the range [0,w,,] to this
hypothesis. Hence, each unit of the first hl is regarded as
a member of a sensor-related committee, and the quantity
wnorm (i.e. the normalized weights) is called the “Voting
Power” (VP) of that member (Figure 3). The sum of the
voting powers inside a committee is normalized to N (e.g.,
N=1000).

The second hl units are interpreted as “vote-taking units”
(VTUs) of the above sensor-related committees. Therefore
their piecewise linear responses give “majority rules”: to
have a positive judgement (i.e., an output greater than or
equal to 0.5) at least VT; votes are required; an increase
or decrease of at least AV; votes causes the judgement
reach the value 1 or 0, respectively. Consequently, VT is
called the “Voting Threshold” and AV; the “Delta Votes”
of the j-th sensor-related committee.
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Figure 3 - (a) Example of a Piecewise Linear Tree-like Network (PLTN); (b) legend for a unit
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At the same time, the second hl units are the members of
a further committee, that is, the “overall committee”. They
use their judgement to decide how many of their available
votes (VP) assign to the current classification hypothesis.
The role of the output unit is that of VTU of the overall
committee.

The task of all of the above committees is to judge if a
sample belongs or not to a given class. Inside all of them,
the sum of the voting powers of the component members
is equal to a prefixed number N.

The voting power of a member of a sensor-related com-
mittee tells how much important is a elementary criteria,
therefore, also how much important is the related input
(e.g., asensor channel). The voting power of a member of
the overall committee is proportional to the importance of
the related sensor. In both cases, the importance is related
to the assignment of samples to a given class.

Each committee corresponds to a criterion or subcrite-
rion defined in Section 2.2, and the non-linear functions
used to aggregate subcriteria into criteria correspond to
the linear majority rules of the corresponding commit-
tees.

Figure 4 - (a) ATM image; (b) SAR image

4. EXPERIMENTAL RESULTS

Experiments were carried out on various data sets to vali-
date the effectiveness of our approach for land-cover clas-
sification. In the following, we will focus on an agricul-
tural application concerning crop discrimination. An
additional experiment on a multispectral image of a forest
area is also briefly described. For other experiments, we
refer the reader to (Serpico et al., 1993, Roli ef al., 1993).

4.1 Agricultural application

The data set consists of multisensor remote-sensing images
acquired by two sensors installed on aircraft: a Daedalus
1268 Airborne Thematic Mapper (ATM) scanner, and a
PLC band, fully polarimetric, NASA/JPL imaging radar
system. The former is a passive sensor working in the
visible and infrared portion of the electromagnetic spec-
trum; the latter is an active sensor providing synthetic
aperture radar (SAR) images. The flights took place in July
and August 1989, respectively.

Sub images of 250 x 350 pixels, related to the agricultu-
ral area of the Feltwell village (U.K.), were selected for
classification experiments (Figure 4). Images were regis-

ImageMagick: sar | hviif

(b)
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tered to an average accuracy of about 1 pixel by using the
radar image as reference and scaling and registering the
ATM image on it. Based on ground truth, we selected
pixels from the five numerically most representative agri-
cultural classes (sugar beet, stubble, bare soil, potatoes,
carrots). For each pixel, a feature vector was computed by
utilizing the intensity values in six ATM bands and 9 fea-
tures extracted from radar images (mean values were extra-
cted from 9 radar channels by using a 9 x 9 window sur-
rounding each pixel; we selected P, L, and C bands with
polarizations HH, VV, and HV). For input coding, we
normalized the above fifteen features in the range [0,1].

4.1.1 Classification Performances

We used five single-output TLNs, one for each data class
(Figure 5). A training set was generated by randomly
selecting 50 % of the 8836 pixels. The remaining pixel
were used as test patterns.

Each TLN was separately trained in order to classify trai-
ning set pixels as belonging or not to the related data class.
The error backpropagation training procedure was used
(training by epoch). As convergence criterion we adopted
a threshold value on the “ global mean square error”. The
five TLNs obtained after the training procedure were
connected to a winner-takes-all block (as in Figure 1)
and used to classify test patterns. Table 1 shows the clas-
sification results on training and test data. The classifica-
tion results provided by a Bayesian classifier (assuming a
normal distribution for each data class) are also reported.

4.1.2 Interpretation of the network behaviour

For instance, let us consider how the behaviour of the
TLN devoted to the class “Bare Soil” can be interpreted
according to the proposed method. To interpret its beha-
viour, we consider the “simplified representation” in
Figure 6, that is, the related PLTN.

Such a graphical representation gives a synthetic view of
the neural network behaviour. For example, we can notice
that intensity in ATM bands is a little more important
than the intensity in radar channels. In fact, the weights
associated to ATM and SAR subnets are 585 and 415, res-
pectively. For the other data classes the importance
(“significance parameter”) of the considered imaging sen-
sors (SAR and ATM) is shown in Table 2. The mean
values indicate that both sensors are important to solve the
given multisensor classification problem.

We can consider the Voting Powers and the Voting Thre-
sholds related to ATM and SAR committees to evaluate
the importance of the related bands. With regard to the
ATM sensor, we can say that the 3rd band seems to be
negligible. Its Voting Power is much smaller than the
Voting Powers related to the other bands. Band C of the
SAR sensor seems to be the most important. In fact, the
sum of the voting powers related to band C channels can
exceed the Voting Threshold (VT=590) of SAR commit-
tee. On the contrary, channels related to band P seem to
be negligible.

4.2 Forest application

This data set was obtained by using the above described
ATM image, only. It consists of 100 regions obtained by
segmenting an area of 255 x 255 pixels including the Thet-
ford forest (close to the Feltwell village in U.K.). We
selected the numerically most representative class, that is,
according to the ground truth, “deciduous forest”. The
class label of each region indicates belonging or not to
deciduous forest. The average value in five ATM bands
were selected as spectral features. In addition, we consi-
dered a set of three geometrical features computed for
each region: the region size (i.e., the number of pixels
belonging to a region), and two shape parameters. These
last parameters are computed by first extracting the Mini-
mum Bounding Rectangle (MBR) for each region (that is
the smallest circumscribed rectangle), then computing the
ratio between the longest and the shortest side of the MBR
(“elong”), and the ratio between the region size and its
MBR size (“fit”).

Due to the small number of samples, we have adopted the
k-fold cross-validation process (with k=4) to estimate
classification performances (Stone, 1974). Consequently,
we subdivided the dataset in four subsets, then we used
three of them as training set and the remaining one as test
set. This was done in all of the four possible combinations
and the mean value of classification performances was
computed.

The TLN shown in Figure 7a was trained to classify
pixels as belonging or not to the “deciduous forest” data
class. Such a network is constituted by two sensor-rela-
ted subcriteria. Geometrical features (“region size”,
“elong”, and “fit”’) were regarded as information derived
from a “virtual” sensor. Classification performances esti-
mated by the k-fold cross-validation process were good
(an error rate equal to 1.74 %). Network behaviour was
interpreted by the related PLTN (Figure 7b). ATM sen-
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" Table 1 - Classification performances of the proposed neural networks in comparisons with a Bayesian classifier

STRUCTURED ANNs BAYESIAN CLASSIFIER

DATA CLASS % ERROR RATE % ERROR RATE % ERROR RATE % ERROR RATE

(TRAINING) (TEST) (TRAINING) (TEST)
SUGR BEET 2.57 3.66 1.69 1.96
STRUBBLE 6.78 8.5 12.35 11.23
BARE SOIL 12.65 12.69 9.04 9.67
POTATOES 2.75 3.48 2.01 3.48
CARROTS 3.99 4.15 5.77 8.15

GLOBAL
% ERROR RATE 4.52 5.45 5.32 5.88
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sor seems to be more important than the “virtual” sensor
related to geometrical features(693 votes as compared
with 307 votes). In particular, two geometrical features
(“region size” and “fit”) seem to be negligible on the
basis of their Voting Powers (73 and 120). This last
conclusion was confirmed by removing such features and
testing classification performances. After retraining, very
similar performances as with the complete set of features
were obtained.

Table 2 - Evaluation of the importance of the considered
imaging sensors

SIGNIFICANCE PARAMETER

DATA CLASS ATM SENSOR SAR SENSOR
SUGAR BEET 0.518 0.482
STUBBLE 0.382 0.618
BARE SOIL 0.585 0.415
POTATOES 0.529 0.471
CARROTS 0.540 0.460
MEAN VALUE 0.510 0.490

5. CONCLUSIONS

In this paper, we have presented a novel approach to land-
cover classification in multisensor remote-sensing images.
Such an approach is based on structured neural networks
which allows one to exploit ANNs’ advantages while sol-
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ving, in the context of the considered application, the pro-
blems of “architecture definition” and of the interpretation
of the “network behaviour”. From the viewpoint of the
land-cover classification, the proposed method provides
important advantages. It constitutes a simple “data fusion”
technique to integrate the information extracted by mul-
tisensor images. In addition, it allows one to evaluate the
importance of different sensors and of their bands. With
regard to classification performances, comparisons with
the Bayesian classifier confirmed the effectiveness of the
proposed approach.

This research work could be expanded in many directions.
In particular, the proposed approach could be easily
applied to multisource classification problems (Bene-
diktsson ez al., 1990), by devising an appropriate input
coding for non-numerical sources.
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