September 2010
N° 83

NEWSLETTER

European Association of Remote Sensing Laboratories
Front Cover – Pictures from the ISPRS Centenary Celebrations held in Vienna on 3 to 4 July 2010 relating to the signature of the agreement for close cooperation among EARSeL, SELPER, AARS and AARSE.
The Newsletter is a forum for an exchange of news and views among the members of the Association. The opinions expressed in the Newsletter do not necessarily reflect the views of the editor, the EARSeL Bureau or the other members of the Association.

Articles published in the Newsletter may be reproduced as long as the source of the article is acknowledged.
<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAIRMAN</td>
<td>Dr Rainer Reuter</td>
<td>Institute of Physics, University of Oldenburg</td>
<td>+49 441 798 3522</td>
<td>+49 441 798 3201</td>
<td>rainer.reuter@earsel.org</td>
</tr>
<tr>
<td>VICE-CHAIRMAN</td>
<td>Lena Halounova, Ph.D.</td>
<td>Remote Sensing Laboratory, Czech Technical University in Prague</td>
<td>+420 22435 4952</td>
<td>+420 22435 5419</td>
<td>lena.halounova@earsel.org</td>
</tr>
<tr>
<td>SECRETARY-GENERAL</td>
<td>Dr Ioannis Manakos</td>
<td>Department of Geoinformation in Environmental Management, Mediterranean Agronomic Institute of Chania</td>
<td>+30 28210 35001</td>
<td>+30 28210 35001</td>
<td>manakos.earsel@earsel.org</td>
</tr>
<tr>
<td>TREASURER</td>
<td>Dr Rosa Lasaponara</td>
<td>Institute of Methodologies for Environmental Analysis (IMAA-CNR), 85050 Tito Scalo (PZ), Italy</td>
<td>+39 0971 427214</td>
<td>+39 0971 427214</td>
<td>lasaponara@imaa.cnr.it</td>
</tr>
<tr>
<td>EARSel SECRETARIAT</td>
<td>Gesine Boettcher</td>
<td>Nienburger Strasse 1, 30167 Hannover, Germany</td>
<td>+49 511 7622482</td>
<td>+49 511 7622483</td>
<td>secretariat@earsel.org</td>
</tr>
<tr>
<td>INTERNATIONAL RELATIONS</td>
<td>Dr Mario Hernandez</td>
<td>UNESCO, 1 Rue Miollis, 75732 Paris cedex 15, France</td>
<td>+33 1 45 68 4052</td>
<td>+33 1 45 68 55 70</td>
<td>ma.hernandez@unesco.org</td>
</tr>
</tbody>
</table>
1. EDITORIAL

Dear members,

After the summer, we would like to give you news you about the EARSeL activities.

We are pleased to inform you that in the framework of the ISPRS Centenary Celebrations held in Vienna on 3 to 4 July 2010 an agreement for close cooperation was signed with three international remote sensing associations outside Europe.

These are:

- the “Sociedad de Especialistas Latinoamericanos en Percepcion Remota”, SELPER (http://www.selper.org/). The association situated in Bogotá, Colombia,
- the Asian Association on Remote Sensing, AARS: (http://www.a-a-r-s.org/acrs/). 30 national organisations in Asia and Australia are members, and seven European and American institutes and societies are associated members. AARS organises annual conferences on remote sensing, the 31st Asian Conference on Remote Sensing will be held on 1-5 November 2010 in Hanoi, Vietnam. Central office of the association is in Tokyo, Japan,
- the African Association of Remote Sensing of the Environment, AARSE (http://www.itc.nl/aarse/).

The agreement aims at bringing together EARSeL members and experts from Asia, Africa and Latin America, with the objective to promote international coordination and cooperation in the various fields of remote sensing.

We welcome Konstantinos Nikolakopoulos as new Chairman of the Special Interest Group “Geological Applications”.

In this issue of the newsletter, we would like to direct your attention to papers recently published in the EARSeL eProceedings (volume 9) and herein we include the abstracts of volume 9 (issues 1 and 2).

We invite you to submit you papers to be considered for publication in EARSeL eProceedings and also for Feature article in the next EARSeL NEWSLetters

Finally, there is always the list of relevant meetings, conferences, symposia and workshops that you can attend in the near future.

We hope to meet you at future EARSeL events.

Wishes for a productive autumn,
Sincerely,

Editorial Team
2. NEWS FROM EARSeL

2.1 MEMORANDUM OF UNDERSTANDING SIGNED

In the framework of the ISPRS Centenary Celebrations held in Vienna on 3 to 4 July 2010 an agreement for close cooperation was signed with three international remote sensing associations outside Europe. These are:

- the “Sociedad de Especialistas Latinoamericanos en Percepcion Remota”, SELPER. The association, situated in Bogotá, Colombia, represents 13 national remote sensing organisations in Central and South America. The XIV Simposio Internacional de SELPER will be organised on 8-12 November 2010 in Guanajuato, Mexico.

- the Asian Association on Remote Sensing, AARS. 30 national organisations in Asia and Australia are members, and seven European and American institutes and societies are associated members. AARS organises annual conferences on remote sensing; the 31st Asian Conference on Remote Sensing will be held on 1-5 November 2010 in Hanoi, Vietnam. Central office of the association is in Tokyo, Japan.

- the African Association of Remote Sensing of the Environment, AARSE. 70 institutes from 37 African countries and are members of AARSE, and individuals and societies from 16 non-African countries are associated. The 8th AARSE Conference will be held on 25-29 October 2010 in Addis Ababa, Ethiopia. Central office is in Enschede, The Netherlands.

The memorandum, initiated by our Honorary President Gottfried Konecny, aims at bringing together EARSeL members and experts from Asia, Africa and Latin America, with the objective to promote international coordination and cooperation in the various fields of remote sensing. This will be achieved by regular meetings during symposia, bringing together researchers interested in an exchange of information and in initiating multilateral projects in areas of common expertise. This will cover all relevant topics from the development of new sensors up to their application in remote sensing programmes.

It has been agreed to prepare, as a result of a first meeting at the 31st EARSeL Symposium 2011 in Prague, a Work Programme which will report on joint projects for the coming years. EARSeL members are invited to join this initiative which offers an excellent chance for fruitful cooperation in future!

More information on our partner associations can be found on the following websites:

- AARS: http://www.a-a-r-s.org/acrs/
- AARSE: http://www.itc.nl/aarse/

Ceremony of MoU signature at the ISPRS Centenary Celebration in Vienna, 3 July 2010. From left to right: Orhan Altan, ISPRS President; Rainer Reuter, EARSeL Chairman; Gottfried Konecny, Initiator of the Memorandum; Tsehaie Woldai, President of AARSE; Kohei Cho, General Secretary of AARS; and Myriam Ardila Torres, Vice Chairman of SELPER.

Tsehaie Woldai (AARS) and Rainer Reuter (EARSeL) signing the MoU. On the left: Orhan Altan and Ian Dowman (ISPRS) are in the background.
Memorandum of Understanding

On July 3, 2010 the undersigned representatives of the four largest regional remote sensing organisations met during the 100th Anniversary of the International Society of Photogrammetry and Remote Sensing in Vienna, Austria.

These institutions are:

1) The European Association of Remote Sensing Laboratories, EARSeL, founded in 1977
2) The Latin American “Sociedad de Especialistas Latinoamericanos en Percepcion Remota”, SELPER, founded in 1980

The meeting in Vienna has been suggested during the International Congress for Photogrammetry and Remote Sensing in Beijing in July 2008, because

a) these four institutions are the largest research institutions of a regional nature in existence
b) they are focal points for regional research and technology developments operating in an independent bottom up environment
c) they unite national activities in their regions with annual meetings
d) they realize the large potential of uses of remote sensing technology for their member countries and for the solution of global problems
e) because of their local backgrounds these four organisations can particularly benefit from interchanges of experiences by creating a stronger and more effective global network in remote sensing science and technology

The representatives of these four organisations have discussed these common interests, and they have agreed to the following:

1. Their representatives will meet annually at scientific and technical events of remote sensing.
2. They will develop a work programme for suggestions on how to improve the international standing of remote sensing.
3. The organisations will establish a small secretariat to follow up these activities to promote the standing and the contributions together with other institutions, including the international scientific societies or bodies, such as FIG, IAG, ICA, ISPRS and others.
4. They will furthermore investigate the possibility for the establishment of an International Scientific Academy of Remote Sensing to promote these efforts.

Signed in Vienna on July 3, 2010

Dr. Rainer Reuter,
Chairman of EARSeL,
University of Oldenburg
Institute of Physics
D-26111 Oldenburg, Germany

Dr. Myriam Ardila Torres
Vice President of SELPER
Carrera 30 No. 48-51 Edificio IGAC-CIAF
Bogotá D.C., Columbia

Prof. Kohei Cho
General Secretary of AARS
Research and Information Center
Tokai University
Tokyo, 151-0063, Japan

Dr. Tsehaie Woldai
President of AARSE
ITC, University of Twente
7500 AA Enschede, The Netherlands

Prof. Orhan Oltan
President of ISPRS as witness
Department of Geomatic Engineering
Istanbul Technical University
34469 Ayazaga-Istanbul, Turkey

Rainer Reuter
2.2 ABSTRACTS OF EARSeL’S ePROCEEDINGS VOL.9 (2010)

A multi-temporal analysis of vegetation dynamics in the Iberian peninsula using MODIS-NDVI data.
Ana Pérez-Hoyos, Beatriz Martínez, MaríA Amparo Gilabert, and Francisco Javier García-Haro

The aim of this study is to characterise the vegetation dynamics of the Iberian Peninsula using MODIS-NDVI time series (2000-2008) at 1 km resolution. For this purpose, NDVI profiles are analysed using filtered data derived from a spectral technique, a multi-resolution analysis (MRA) based on the wavelet transform (WT). The MRA results in an additive decomposition of the time series into several components associated with variations on a particular temporal scale. First, the functional diversity of the Iberian Peninsula is described by using several metrics derived from the first component of the MRA (filtered time series). Second, a trend analysis is performed with the fifth component of the MRA having a semi-period around a year (inter-annual component) in order to detect potential vegetation changes over the considered period. The 3-month scale Standard Precipitation Index (SPI-3) was used to better identify changes. As a result of the functional diversity a characterisation of the Ecosystem Function Types (EFT) of the Iberian Peninsula with 30 representative classes is obtained. The EFT present a decreasing northwest to southeast biomass gradient. An exploratory analysis with the CORINE land cover classification revealed the importance of land cover in explaining the functioning of particular ecosystems, particularly for ecosystems showing a strong seasonal dynamics, such as rice and non-irrigated crops. Finally, the trend analysis indicates that most vegetation changes over the considered period are due to forest fires and are connected to the SPI trend.

Tracing Wadden Sea water masses with an inverse bio-optical and endmember model
Annelies Hommersom, Steef Peters, Hendrik Jan van der Woerd, Marieke A. Eleveld, Marcel Wernand, and Jacob de Boer

With its 500 km length the Wadden Sea is the largest mudflat area in the world. Discharges from various rivers mix here with water from the North Sea. Due to surfacing tidal flats during low tide, the variation in source water, resuspension and extremely high concentrations of Chlorophyll-a (Chl-a), Suspended Particulate Matter (SPM), and Coloured Dissolved Organic Matter (CDOM), large temporal and spatial differences in watercolour can be seen.

To visualise the horizontal mixing of water masses with different colours from MERIS data, two approaches were followed. The first approach was an inverse bio-optical model called HYDROPT, in which the absorption and scattering properties of the water constituents (Specific Inherent Optical Properties or SIOPs) can be adapted to regional values. This approach can be used to determine 'water types': water masses in which the SIOPs of the constituents are similar. The second approach was an endmember model, based on spectral reflectance shapes. This approach can be used to determine 'water classes': water types in which certain constituents are predominant. The predicted water types and water classes were compared with knowledge on (tidal) distributions of water types in the Wadden Sea.

In the data of March '07 (winter) and May '06 (summer) differences in water types between the North Sea, the Wadden Sea and water originating from the large rivers were seen in the German Bight. The endmember approach was able to visualise mixing between water classes. Results of this method showed dominance by SPM in winter and much higher concentrations of Chl-a and CDOM in summer. A combination of the two methods would probably lead to the best tracing of water masses.

The "blue shift" of emission maximum and the fluorescence quantum yield as quantitative spectral characteristics of dissolved humic substances
Daria Shubina, Elena Fedoseeva, Olga Gorshkova, Svetlana Patsaeva, Vera Tereshkova, Mikhail Timofeev, and Viktor Yuzhakov
Humic substances (HS) play important roles in a variety of biogeochemical processes. Fluorescence spectra can be used for quantitative and qualitative characterisation of water-soluble humic substances (HS) and, in particular, of dissolved organic matter (DOM) in water. In this study, we measured the fluorescence spectra of natural HS (riverine, lake, marine water, and soil aqueous extractions) and commercial water-soluble HS under excitation from 270 to 355 nm. Natural water samples were filtered in two stages by micro- and ultra-filtration. After ultrafiltration, DOM was separated into two fractions depending on the size of the particles, for which fluorescence spectra were also obtained. The comparative analysis was made with a focus on the so-called “blue shift” (emission maximum shifts towards shorter wavelengths with increasing excitation wavelength) and the fluorescence quantum yield (QY) of samples of different origin. The fluorescence quantum yield under excitation at 355 nm for commercial HS (QY=0.008) was less than that for natural water DOM (QY=0.028), but more than for soil HS (QY=0.003). The low molecular weight fraction quantum yield was bigger than that for the colloidal fraction by 20-30%. The fluorescence quantum yield for natural water and for soil extractions HS increased with excitation wavelength, but the quantum yield did not depend on the excitation wavelength for commercial HS samples. Natural HS differed from commercial HS in higher heterogeneity of fluorophore composition as evidenced by the larger “blue shift” value and QY dependence on excitation wavelength.

2.3 NEW CHAIRMAN FOR EARSeL SIG ON GEOLOGICAL APPLICATIONS

It is a great honour, and a very big responsibility to accept the proposal of the EARSeL Council to chair the Special Interest Group “Geological Applications”. All the more because I will be succeeding Professor Dr. Freek van der Meer, having to continue the very successful work he performed during the last eleven years. EARSeL’s Special Interest Group “Geological Applications” started its mission in January 1999. It was formed to act as a forum for international discussions amongst Earth scientists. The SIG “Geological Applications” promotes geologic remote sensing and Earth observation and attempts to bridge the gap between technology and applications by bringing together experts from universities, institutes and commercial enterprises at scientific meetings.

Working at the Greek Geological Survey (IGME) for the last five years I had the opportunity to collaborate with many Greek and foreign colleagues and to realize the great number of possibilities of remote sensing in all the sections of geology (geological mapping, tectonic geology, hydrogeology, geomorphology, mine monitoring etc). Also in the field of geohazards (landslides monitoring, earthquakes, floods etc), the contribution of remote sensing data (optical, radar, thermal) is very important. Under this perspective, one of the main objectives of the SIG “Geological Applications” should be to have as many geoscientists as possible be familiarized with the possible remote sensing applications. In order to achieve that objective the SIG will continue to organize specific sessions at EARSeL- and non-EARSeL conferences and events, workshops in the framework of EARSeL Symposia, and training courses. The first goal for the near future is to reorganize the webpage of the SIG “Geological Applications” and the members’ mailing list in order to promote its activities.

If you are interested in joining the activities of SIG “Geological Applications” and would like to be included in the SIG mailing list, please contact Dr. Konstantinos Nikolakopoulos via: knikolakopoulos@igme.gr or the EARSeL Secretariat.

Konstantinos Nikolakopoulos

2.4 JOINT EARSeL SIG WORKSHOPS

The joint workshop between the SIG’s:

- Urban remote sensing
- 3D remote sensing
- Radar remote sensing
- Developing Countries
- Thermal remote sensing
take place in Gent on 22-24 September 2010. The preliminary program of the workshops are as follows:

Wednesday 22 September

8.30-10.00: Registration with coffee
10.00-11.00: Opening Session
Welcome address from EARSeL
R. Goossens, ex-President of EARSeL
Welcome address from the Ghent University
H. De Jonghe – Dean Faculty of Science
Keynote presentation
Integrating Multiple Satellite Sensors for Urban Climatology in Developing Countries
E. Parlow
11.00-11.30: Coffee break
11.30-12.15: Tutorial
Acquiring Moderate Resolution Remote Sensing Data from Nasa: What, Where, How, How much?
M. Abrams, Director of the ASTER Program
12.15-14.00: Lunch
14.00-15.30: Urban Remote Sensing(1) - Chair: C. Jurgens
Comparison of Two Classification Techniques for Urban Impervious Surface Mapping and the Impact on Simulated Runoff
Eva M. Ampe, et al.
Identifying the Poor in the Cities - How can Remote Sensing help to Profile Poverty (slum dwellers) in Megacities?
Maik Netzband
Spatio-Temporal Analysis of Informal Settlements Development. A Case Study in Istanbul, Turkey
Olena Dubovyk, et al.
14.00-15.30: Radar Remote Sensing (1) - Chair: U. Sörgel
State of the Art of 3D-Model Extraction Using in SAR
U. Sörgel
Definition of a Radar Grammetric Model and Application with Cosmo-Skymed Imagery
Paola Capaldo, et al.
Building Detection in Urban Areas from Combined Optical and Insar Data Exploiting Context
Jan Dirk Wegner

15.30-16.00: Coffee break
16.00-18.00: Special Session on the Mamd Project – Urban Remote Sensing Topics
Chair: J. Vandenabeele
Inferring Urban Morphology for the Greater Dublin Area from Continuous Sealed Surface Data: a Metric-Based Approach
Tim Van de Voorde et al.
Using information on Urban Morphology derived from a Time-Series of Medium Resolution Remote Sensing Data for the Calibration of the MOLAND Urban Growth Model
Johannes van der Kwast et al.
Estimating the Impact of Urbanisation on Hydrology in Dublin, Ireland
Boud M.G. Verbeiren, et al.
Use of Multi-Angle High-Resolution Imager and 3D Information for Urban Land-Cover Classification
Marc Binard, et al.

Thursday 23 September

9.00-10.30: Remote Sensing for Developing Countries (1) - Chair: G. Büyüksalih
Ontology for Slums
Divyani Kohli
Imagery, in the Western Desert of Egypt
Mohammed Abd El-Fattah Ghadiry, et al.
The Role of Remote Sensing in an Urban Observatory for Developing Countries
Cristina D Henriques

9.00-10.30: 3D-Remote Sensing (1) - Chair: K. Jacobson
The ASTER Global Topographic Data Set
Michael Abrams, et al.
Assessment of Surface Model Extraction of an Urban Scene from VHR Multisensor Spaceborne Imagery
Frederik MR Tack, et al.
Matching Strategies for DSMS Extraction in Urban Area from High Resolution Satellite Imagery
Paola Capaldo, et al.

10.30-11.00: Coffee break

11.00-12.30: Interactive Poster Session
Further Advances in Automatic Mapping of Seismic Damage Based on Very High Resolution SAR Images
Fabio Dell’Acqua, et al.
The Changes of the Ecological Significance of Wetlands in the Red River Coastal Zone, Vietnam
Nguyen Tien Cong
Spectral Discrimination of Healthy Corals on Spermode Archipelago, Indonesia
Nur Jannah Nurdin, et al.
Capabilities Test of Alos AVNIR 2 and LANDSAT 7 ETM SLC – Off Images for Coral Reefs Ecosystem Detection on Sperùp.de Archipelago, Indonesia
Nur Jannah Nurdin
Forests Destruction Asses by Using Remote Sensing Data and Field Study (case study: Khuzestan, ALBAJI’S DESERT)
Hamid reza Matinfar
Evaluation of Effects of Multiresolution Segmentation Parameters on the Accuracy of Object-Oriented Classification of Satellite Images for Land Use/Cover (case study in Tehran)
Ali Ghadiri
Application of Integrating Thermal Remote Sensing Data with other Satellite Image-ries to examining Changes in Global LST
Seyed Kazem Alavipanah, et al.
Remote Sensing for Physical Protection of the Pipeline Network
Mansour Ahamdi Foroushani, et al.
A Software for Agricultural and Drought Monitoring in Morocco, using Vegetation Indexes
Jose L Casanova, et al.
Monitoring the Drought Status in the Western Forest covered Regions of Algeria with Remotely Sensing Landsat ETM+ data
Hamimed Abderrahmane, et al.
Study on the Effect of Sediment Transport on the Displacement of the Estuaries (Case study: Rivers of Gilan Province)
Mohammad Ebrahim Banhabib, et al.
Evaluation of Methods efficiency Kriging and IDW Method for Simulation of Rain Parameters
Shahram Khalighi Sigaroodi, et al.

Assessment Efficiency Linear Regression and Longbin Method to Reconstruction of Hydrometric Data
Shahram Khalighi, et al.
Landscape Change and Desert Land Monitoring and Assessment
Gholamreza zehtabian, et al.
Dimensionality Reduction of Hyper Spectral Data using Area Based Feature
Accuracy Assessment of a LIDAR Digital Terrain Model by using RTKGPS and Total Station
Coen Stal, et al.

12.30-14.00: Lunch

14.00-15.30: Urban Remote Sensing (2) - Chair: D. Maktav
Semi-Automated Analysis of Remote Sensing Data – An Aproach for Supporting Urban Planning Authorities
Carsten Jürgens, et al.
Multiple Endmember Unmixing of Chris/Proba Data for Mapping of Sealed Surfaces in the Brussels Capital Region
Luca Demarchi, et al.

14.00-15.30: Radar Remote Sensing (2) - Chair: F. Dell’Aqua
Comparison of High Resolution InSAR and Optical DEMs
Umut Gunes Sefercik, et al.
A Comparative Analysis of the Results achieved by the Spinua and Delf Psi Techniques: Ground Deformation Monitoring of the Gulf of Gdansk Coastal Area (Poland)
Marek Graniczny, et al.
Ground-Based SAR Interferometry: Analysis of some Experimental Observations
Guido Luzi, et al.

15.30-16.00: Coffee break

16.00-18.00: Miscellaneous (1) - Chair: M. Abrams
Mapping, Monitoring and Re-Constructing Historical Evolution of Eruptive Activity at Nyamulagira, DRC, and its Implications for Hazards
Benoît Smets, et al.
Improvement of the Knowledge in a VHR Image: Detection of Damaged Buildings on a VHRimage in Peri-Urban Milieu(The case of an earthquake with QUICKBIRD images)
Benachir Aniss Hadj, et al.
3D THz-Imaging on Simulated Data with a First Test on Real Radar VNA Data in the GHz Domain.
Roel Heremans, et al.

16.00-17.30: Thermal Remote Sensing (2) - Chair: C. Hecker

Modelling Air Temperature via Assimilation of Satellite derived Surface Temperature within the Urban Heat Island Project.
Koen De Ridder, et al.
Ground Surface Temperatures (GST) Modeling in the Russian Altay Mountains by Using MODIS Land Surface Temperatures (LST).
Ruben Van De Kerchove, et al.
The Advantages of Thermal Remote Sensing Data for Surface and Subsurfaces Soil Properties Mapping in Desert Environments
Seyed Kazem Alavipanah

19.00: Workshop Dinner: Typical Flemish Cuisine.

Friday 24 September

9.00-10.30: Miscellaneous (2) - Chair: F. Canters
Influence of Spatial Resolution and Distribution of Remotely Sensed Impervious Surface Cover on Runoff Prediction in Urbanized Catchments
Tomasz Berezowski, et al.
LIDAR Data for Urban Land Cover Mapping Based on Decision Tree
Yuchu Qin, et al.
The use of stereoscopical images taken from a micro-drone for the documentation of Heritage – an example from burial mounts in the Russian Altai.
Marijn Henderick, et al.

9.00-10.30: Thermal Remote Sensing (3) - Chair: E. Parlow
Evaluation of DisTrad Downscaling of MODIS Thermal Products over Dublin
Wiesam A. A. Essa, et al.
Post-Fire Changes in Land Surface Temperature and Surface Albedo assessed with MODIS
Sander Veraverbeke, et al.
Dependence of Thermal Infrared Emissivity on Soil Moisture. Field and Laboratory Measurements
Maria Mira, et al.

11.00-12.30: Remote Sensing for Developing Countries (2) - Chair: E. Parlow
Cairo - The Growing of a Mega-City
Eberhard Parlow, et al.
Using GEOBIA to assess Crown Diameter Classes of Acacia Tortilis in Bou Hedma, Tunisia
Kevin Delaplace, et al.
Object-Based Classification of a Sclerophyllous Oak Forest in Northwest Yunnan (China) based on High Resolution Satellite Imagery
Flore R. Devriendt, et al.

11.00-12.30: 3D Remote Sensing - Chair: M. Crespi
Digital Surface Models in Urban Areas based on Satellite Imagery
Karsten Jacobsen, et al.
Accuracy Evaluation of DEM extracted from a GeoEye Stereo Pair of Flat Rural Areas for Hydraulic Hazard Analysis
Alessio Funini, et al.

12.30-14.00: Lunch

14.00-15.30: Remote Sensing for Developing Countries - Chair: R. Goossens
ENDELEO, a Web-based Tool to Monitor Vegetation Dynamics in Kenya
Flore R. Devriendt, et al.
Analyzing Vegetation Change in Relation to Environmental and Socio Economic Factors in Lower Lancang Watershed, China
Zhiming Zhang, et al.
Sandra Eckert

14.00-15.30: Radar Remote Sensing (3) - Chair: C. Frey
Image Fusion Techniques for the Integration of High Resolution SAR Data and Multispectral Imagery in an Urban Environment – A Statistical Comparison
Christian Berger, et al.
Identification of Structural Changes caused by Different Type of Damages in Agriculture by Synergistic Use of Optical and Radar Data
Gizella Nádor, et al.
GPR Time Lapse to Quantify the Subsidence Degree in an Urban Area
Giovanni Leucci, et al.

15-30-16.00: Coffee Break
16.00-16h30: Special Presentation on Education in 3D-Remote Sensing
SEOS:3D-Module and Geomobiel

Thérèse Ongenae

16.30-17.00: Closing of the workshops
3. NEWS ITEMS

3.1 JUST PUBLISHED

This new book is aimed at senior undergraduates and new postgraduates to help them appreciate ways in which remote sensing can be used for the study and monitoring of vegetation. The authors believe that, in order to be able to obtain the most benefit from a technique such as remote sensing, it is essential for the user to have a thorough understanding of the principles involved, rather than just apply procedures and techniques by rote. Correct interpretation of RS data to provide useful information requires a good understanding of the ways in which these data are obtained and especially of the inherent limitations.

Consequently, the first part of the book covers fundamental principles of RS, biological properties and detecting systems. Then follow several chapters that consider how to extract useful information from, mainly, spectral data. Then, after a consideration of possible ways in which errors may creep in, a number of applications are considered in depth. Topics covered include basic radiation physics, radiative properties of vegetation, soils and water, plant and canopy function, earth observation systems, basic image processing and image classification, multiangular sensing and modelling of radiation transfer properties, canopy mass and heat exchange, and sampling, error and scaling. Even though a quantitative approach is used, the emphasis throughout is on the key underlying principles and mathematical derivations are kept to a level accessible to most upper undergraduates, emphasizing the meaning rather than the mathematics. A number of useful appendices are included.
3.2 RUSSIAN FIRES

Satellites reveal Russian fires worst in 14 years

More wildfires have burned around the Russian capital this year than in the last decade and a half, according to sensors aboard ESA’s observation satellites. The forest and peat bog fires ignited this summer amid an unprecedented heat wave of up to 40ºC. Working like thermometers in the sky, the Along Track Scanning Radiometer and the Advanced Along Track Scanning Radiometer on ESA’s ERS-2 and Envisat satellites measure thermal-infrared radiation to take the temperature of Earth’s land surface.

Flames reach temperatures that are detected by these sensors and confirm the presence of fire.

Data gathered from fires across Russia from July 1996 to the present were used to plot the number of fires occurring monthly. The region near Moscow showed around six times the number of fires this August compared to previous years.

Data from these sensors are compiled to create ESA’s ATSR World Fire Atlas which is available online to users within six hours. The atlas – the longest worldwide fire record available – also provides the time, date, longitude and latitude of the hot spots.

The atlas is an important scientific resource because fires have a significant impact on global atmospheric pollution, with biomass burning contributing to the global budgets of greenhouse gases such as carbon dioxide.

The data are used for research in atmospheric chemistry, land-use change, global change ecology, meteorology and fire prevention and management.

Source: ESA homepage September 2010
(http://www.esa.int/esaEO/SEMGQSJOXDG_index_0.html)
3.3 GREENLAND GLACIER GIVES BIRTH TO GIANT ICEBERG

Envisat has been observing a rare event in the Arctic since early August - a giant iceberg breaking off the Petermann glacier in North-West Greenland. The Petermann glacier is one of the largest glaciers connecting the Greenland inland ice sheet with the Arctic Ocean. Upon reaching the sea, a number of these large outlet glaciers extend into the water with a floating ‘ice tongue’. The ice tongue of the Petermann glacier was the largest in Greenland, with an extension of about 70 km until early August. This tide-water glacier regularly advances towards the ocean at about 1 km per year. During the previous months, satellite images revealed that several cracks had appeared on the glacier surface, suggesting to scientists that a break-up event was imminent.

In the Envisat radar image taken on 3 August, the ice tongue was still intact but, on 4 August, a large part of the floating ice tongue was separated from the glacier, giving birth to what is currently the largest iceberg in the northern hemisphere. Such a process of detachment, called ‘calving’, occurs regularly on the Petermann glacier, with smaller calving events in summer 2008 and 2009. However, large calving events are rare, with the last such significant event being documented in 1991 by ESA’s ERS-1 satellite.

An animation was created by combining three Envisat Advanced Synthetic Aperture Radar (ASAR) acquisitions (31 July, 4 August and 7 August 2010) taken over the same area, which can be viewed on the ESA website below. The breaking of the glacier tongue and the movement of the iceberg can be clearly seen in this sequence.

The detached iceberg is now about 30 km by 14 km in size with an area of about 245 sq km. It is floating away from Petermann glacier and will enter into the Nares Strait, which separates Greenland from the Ellesmere Island in Canada. The Nares Strait connects the Lincoln Sea and Arctic Ocean with the Baffin Bay. The strait is usually navigable by icebreakers during August/September, when sea ice extent is at its minimum after the summer melt period. Envisat ASAR images will be used in the coming days to monitor the movement of the giant iceberg in support of icebreaker navigation.

The radar imaging system used by Envisat and other satellites is particularly suited to observe polar areas, as it can acquire images through cloud or fog, and night and day.

Source: ESA homepage August 2010
(http://www.esa.int/esaEO/SEMYXY4OJCG_index_0.html)
4. FEATURE ARTICLE

On the use of satellite remote sensing data to characterize and map fuel types

Lanorte Antonio and Lasaponara Rosa
alanorte@imaa.cnr.it
lasaponara@imaa.cnr.it

Abstract

Satellite remote sensing can successfully cope with different aspects of fire management problems, such as danger estimation, fire detection, burned area mapping and post-fire vegetation recovery. In particular, remote sensing can provide valuable data on type (namely distribution and amount of fuels) and status of vegetation in a consistent way at different spatial and temporal scales. The characterization and mapping of fuel types is one of the most important factors that should be taken into consideration for wildland fire prevention and pre-fire planning. In this paper, we provide a brief overview on the use of satellite data for the characterization and mapping of fuel type. Such research activities are part of the FUELMAP project, funded by JRC and focused on the development of fuel models for European ecosystems.

Introduction

Wildland fires are considered one of the most important ecological factors in natural ecosystems (Moreno and Oechel, 1994). For millennia fires were recognized as a historic but infrequent element of natural ecosystems, but, currently, the number of wildfires and burned areas have increased dramatically (FAO; 2001) throughout the world. This increase has also occurred in the fragile ecosystems of the Mediterranean basin (Portugal, Spain, Italy, Greece) that are known to be at high risk of desertification (see, for example, United Nations Convention to Combat Desertification (UNCCD) reports).

In the Mediterranean regions, fires are considered a major cause of land degradation. Every year, around 45,000 forest fires break out in the Mediterranean basin burning about 2.6 million hectares (FAO, 2001). Several studies (see, for example, Vila et al. 2001) dealing with the effects of fires on the vegetation within the Mediterranean basin found that fires induce significant alterations in short as well as long-term vegetation dynamics (see, for example, Perez and Moreno, 1998).

Prevention measures, together with early warning and fast suppression, are the only methods available that can support fire fighting and limit damages caused by fires, especially in regions with high ecological value or dense populations. In order to limit fire damage, fire agencies need to have effective decision support tools that are able to provide timely information for quantifying fire risk. In particular, fire managers need information concerning the distribution, amount, and condition of fuels in order to improve fire prevention and to model fire spread and intensity.

In the past, fuel were generally typed in the field thought long and expensive field reconnaissance campaigns. Today, it is recognized that remote sensing can provide valuable data on type (namely distribution and amount of fuels) and status of vegetation in a consistent way at different spatial and temporal scales.

Obviously, field surveys are still indispensable for fuel type mapping either as the basic source of data or for assessment of products generated at a lower level of detail or to param-
eterise each fuel type (Arroyo et al. 2008). Field surveys are also recommended to create field reference datasets (i.e. groundtruth) to validate maps created from remotely sensed data products (Keane et al. 2001).

Aerial photos have been the most common remote sensing data source traditionally used (Morris, 1970; Muraro, 1970; Oswald et al., 1999) for mapping fuel types distribution.

Satellite multispectral data can be an effective data source for building up fuel type maps from global, regional down to a local scale.

Satellite based fuel MAPPING: from coarse to fine spatial Scales

Fuel maps are essential to fire management at many spatial and temporal scales (Keane et al. (2001).

Coarse scale fuel maps are integral to global, national, and regional fire danger assessment to more effectively plan, allocate, and mobilize suppression resources at weekly, monthly and yearly evaluation intervals (Deeming et al., 1972, 1977; Werth et al. 1985; Chuvieco and Martin 1994; Simard 1996; Burgan et al. 1998; Klaer et al. 1998; de Vasconcelos et al. 1998; Pausas and Vallejo, 1999). Broad area fuel maps are also useful as inputs for simulating regional carbon dynamics, smoke scenarios, and biogeochemical cycles (Running et al.1989; Leenhouts 1998; Lenihan et al.1998). Mid-scale or regional-level digital fuel maps are important in (1) rating ecosystem health; (2) locating and rating fuel treatments; (3) evaluating fire hazard and risk for land management planning; and (4) aiding in environmental assessments and fire danger programs (Pala and Taylor 1989; Ottmar et al. 1994; Salas and Chuvieco 1994; Wilson et al. 1994; Hawkes et al. 1995; Cohen et al. 1996; Sapsis et al. 1996; Chuvieco et al. 1997). Fine scale or landscape-level fuel maps are essential for local fire management because they also describe fire potential for planning and prioritizing specific burn projects (Chuvieco and Congalton 1989; Pala et al. 1990; Maselli et al. 1996). More importantly, such maps can be used as inputs to spatially explicit fire growth models to simulate planned and unplanned fires to more effectively manage or fight them (Stow et al. 1993; Hardwick et al. 1996; Gouma and Chronopoulou-Sereli 1998; Grupe 1998; Keane et al. 1998a).
<table>
<thead>
<tr>
<th>Fuel maps</th>
<th>Spatial scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse</td>
</tr>
<tr>
<td>Primary application</td>
<td>Fire danger</td>
</tr>
<tr>
<td>Fire uses</td>
<td>Plan and allocate resources</td>
</tr>
<tr>
<td>Other possible uses</td>
<td>Global carbon budgets</td>
</tr>
<tr>
<td>Most probable mapping approach</td>
<td>Indirect, gradient model</td>
</tr>
<tr>
<td>Mapping entities</td>
<td>Land use types</td>
</tr>
<tr>
<td>Possible pixel sizes</td>
<td>500 m–5 km</td>
</tr>
<tr>
<td>Imagery</td>
<td>AVHRR, MODIS</td>
</tr>
</tbody>
</table>

Summarized table (Keane et al. 2001 mod.)

Satellite based fuel mapping approach

Several satellite sensors have been used in last decades, applying direct or indirect mapping strategies: (i) direct mapping strategies extract fuel classifications directly from imagery; (ii) indirect fuel mapping strategies use ecosystem characteristics as surrogates for fuels. Direct fuel mapping using remote sensing refers to the direct assignment of fuel characteristics to the results of image classification (Keane et al., 2001).

The main advantage of the direct approach is its simplicity: by classifying fuels directly from imagery, compounding errors from biomass calculations, translation errors from vegetation classifications and image processing steps are minimized. Also the ground references are simplified. However, the main disadvantage is that it is difficult to classify all fuel characteristics in a way useful to fire management in many forested ecosystems. Passive sensors cannot get information about understory (Belward et al., 1994), therefore it is not possible to discriminate understory in forest areas. Moreover, a direct remote sensing mapping often distinguishes vegetation types rather than fuel attributes.
An approach based on a direct fuel mapping (using remote sensing) provides high performances in grasslands and shrub-land (Friedl et al. 1994; Millington et al. 1994; Chladil and Nunez 1995), but meets serious difficulties when used in forested ecosystems because of passive sensors are usually unable to detect understory under close canopies (Arroyo et al. 2008).

According to Keane et al. (2001), indirect fuel mapping based on remote sensing uses ecosystem characteristics as surrogates for fuels to overcome the limitations of imagery to directly map fuel characteristics. This approach assumes that biophysical or biological properties can be accurately classified from remotely sensed imagery. These properties are often related to the vegetation and well correlate with fuel characteristics or fuel models.

The indirect approach is the most commonly used for mapping fuels. At coarse scale AVHRR images have been often used to discriminate broad vegetation types or land cover classes (McGinnis and Tarpley, 1985; Maselli et al., 2003).

Klaver et al. (1998) developed the NFDRS fuel map of California and surrounding areas from a combination of vegetation types from the North American Land Characteristics data base (Loveland et al. 1993), Omernik’s (1987) ecoregion map and field sampling. A knowledge-based system approach based on land-use, vegetation, satellite imagery, and elevation information was used to develop a regional fuel mapping in Portugal (de Vasconcelos et al. 1998).

Fire fuel model maps of the North Cascades National Park were developed by Root et al. (1985) from plant community maps created from 1979 Landsat MSS imagery and environmental relationships; in this work both NFDRS and the Anderson fuel models are assigned to each classified vegetation type.

In an analogous way Miller and Johnston (1985) assigned NFDRS fuel models to vegetation maps created from classifications of Landsat MSS and AVHRR imagery.

Hawkes et al. (1995) used rigorous expert systems approach to assign FBP fuel types to combinations of stand structure and composition information obtained from forest surveys. Yool et al. (1985) used MSS imagery to describe brushy fuels in southern California.

Roberts et al. (1998b) used AVIRIS (Airborne Visible and Infrared Imaging Spectrometer) imagery to classify vegetation fraction, cover, and water content in California, which were then related to fuel loadings directly sampled on the ground.

For the Lassen National Forest in California, Hardwick et al. (1996) assigned Anderson fuel models to vegetation categories from the TM-derived vegetation map

The combined use of Landsat images with ancillary data (i.e. NDVI, slope, texture, illumination) was used to generate fuel type map adapted to the ecological characteristics of the European Mediterranean basin (Riano et al., 2002; Francesetti et al., 2006). Fuel type maps account for structural characteristics of vegetation related to fire behaviour and fire propagation.

More recently, advanced spaceborne thermal emission and reflection radiometer (ASTER) imagery has proved useful for the characterization and mapping of fuel types and fire risk at finer scales (Guang-xiong et al., 2007; Lasaponara and Lanorte, 2007b).

Very high resolution multispectral satellite data, such as QuickBird and IKONOS have been widely applied in vegetation characterization (Wang et al., 2004; Hyde et al., 2006; Kayitakire
et al., 2006; van Coillie et al., 2007; Mallinis et al., 2008) and they may well become a valuable input for the development of local fuel management plans, particularly for the urban–wildland interface (Andrews and Queen, 2001). Lasaponara and Lanorte (2007a) applied a maximum likelihood algorithm to VHR QuickBird image in complex ecosystems of Southern Italy.

In the Mediterranean basin, Giakoumakis et al. (2002) and Gitas et al. (2006) employed an object-oriented approach to map the Prometheus fuels types using IKONOS and QuickBird imagery, respectively. In this approach, pixels are aggregated before classification which is performed on groups of pixels (“objects”), rather than on single pixels. Arroyo et al. (2006) implemented an object-oriented approach to map forest fuels in central Spain. These authors developed a multi-scale segmentation approach with a hierarchical three-level network of image objects: objects were classified using a nearest neighbour classifier.

Promising results were also obtained when VHR data were combined with LiDAR information (Mutlu et al. 2008), indicating that the integration of different sensors may further improve fuel discrimination.

Fuel mapping accuracy

Quantitative accuracy assessments are very important for realistic predictions of fire growth (Keane et al., 1998b; Finney, 1998, Congalton and Green, 1999). Fire growth predictions should, for example, identify those fuel types that generate high fire intensities but are mapped inaccurately (Keane et al., 2001).

Improving the accuracy of mapping fuel models is essential for fuel management decisions and explicit fire behaviour prediction for real-time support of suppression tactics and logistics decisions. For example accuracy assessments should indicate if additional sampling or fuel type aggregation is needed for the fuel types mapped with a low level of reliability (Congalton 1991).

Accuracy assessments are even more critical in fuel mapping because most projects use indirect techniques where the fuel bed is not the mapped entity. Therefore, accuracy assessment protocols should be explicitly built into any standardized fuel mapping approach (Keane et al., 2001).

Low fuel map accuracies could be mainly a consequence of 1) improper use of vegetation or fuels classifications, 2) erroneous field identification of a mapped attribute; 3) mistakes in field data entry; 4) scale differences in field data and mapped elements; 5) improper georegistration.

However also the map consistency is just as important as accuracy level and, therefore, low map accuracies do not always mean that the fuel map is worthless, considering the high variability and complexity of fuels (Keane et al., 2001).

Keane et al. (2000) hierarchically assessed accuracy of vegetation and fuel maps by quantifying error in the field data, vegetation and fuel classifications, and resultant maps so that major sources of error could be identified and controlled. They found that over 20% of map error resulted from the inherent variability of ecological attributes sampled at the stand-level.

References

Arroyo, LA; Pascual, C; Manzanera, JA, 2008. Fire models and methods to map fuel types: The role of remote sensing. Forest ecology and management 256 (6): 1239–1252

USDA Forest Service Ecosystem Management Center Report, Washington D.C.

Hornby LG (1936) Fire control planning in the northern Rocky Mountain region. Northern Rocky Mountain Forest and Range Experiment Station Progress Report Number 1. Missoula, MT. 180 pp.

ftp://popo.jpl.nasa.gov/pub/docs/workshops/98_docs/56.pdf 6pp

5. FUTURE EVENTS

5.1 EARSeL EVENTS

22-24 September 2010: Second joint EARSeL SIG workshop, GHENT UNIVERSITY

EARSeL is organising its second joint workshop between the SIGs:

- Urban remote sensing
- 3D remote sensing
- Radar remote sensing
- Developing Countries
- Thermal remote sensing

The workshop will take place 22-24 of September 2010.

The aim of this joint workshop is to bring the members of the different SIGs together in one joint meeting in order to meet each other and to find common grounds and complementary items in their research. Many times research topics are not only related to one specific SIG, but in most cases there is a certain overlap. This joint workshop aims to channel these overlaps. This broader forum allows and encourages more interdisciplinary contacts among remote sensing scientists.

Weblink:

http://www.geoweb.ugent.be/data-acquisition-3d/earsel-workshop

7-9 February, 2011: 6th Workshop on Remote Sensing of Land Ice and Snow. Berne, Switzerland. Organised by University of Berne

30 May - 3 June 2011: 31st EARSeL Symposium and 34th General Assembly, Prague Technical University, Czech Republic

20-24 September, 2011: 2nd Workshop on Remote Sensing for Archaeology. Poznan, Poland.
5.2 FORTHCOMING CONFERENCES

1. Conferences, Symposia and Workshops organized by ESA

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
</table>
| 21-23 Sep-2010 | 5th ESA Workshop on Tracking, Telemetry and Command Systems for Space Applications
 ESTEC (Netherlands) |
| 21-23 Sep-2010 | UN/Austria/ESA Symposium on Small Satellite Programmes for Sustainable Development: Payloads for Small Satellite Programmes
 Graz (Austria) |
| 27-28 Sep-2010 | Workshop on Mitigation Techniques Against Radiation on Integrated Circuits
 ESTEC (Netherlands) |
| 28-30 Sep-2010 | 11th International Workshop on Simulation and EGSE facilities for Space Programmes - SESP 2010
 ESTEC (Netherlands) |
| 28-30 Sep-2010 | NASGRO - ESACRACK training course
 ESTEC (Netherlands) |
| 04-08 Oct-2010 | ICSO 2010 - International Conference on Space Optics
 Rhodes Island (Greece) |
| 05-08 Oct-2010 | 32nd ESA Antenna Workshop
 ESTEC (Netherlands) |
 Ecole Polytechnique Federale de Lausanne (Switzerland) |
| 14-15 Oct-2010 | 4th Coastal Altimetry Workshop
 Porto (Portugal) |
| 14-Oct-2010 | Future Launchers Preparatory Programme (FLPP) Workshop
 Space Expo (Netherlands) |
| 19-21 Oct-2010 | 4th European Space Cryogenics Workshop
 ESTEC (Netherlands) |
| 28-29 Oct-2010 | 2nd International Workshop on On-Board Payload Data Compression - OBPDC 2010
 CNES, Toulouse, France |
| 02-04 Nov-2010 | ESA Workshop on Avionics Data, Control and Software Systems (ADCSS)
 ESTEC (Netherlands) |
| 03-05 Nov-2010 | Earth Observation for Land-Atmosphere Interaction Science
 ESRIN (Italy) |
| 15-17 Nov-2010 | 4th International Workshop on Remote Sensing of Vegetation Fluorescence
 Valencia (Spain) |
| 16-17 Nov-2010 | 24th European Workshop on Thermal & ECLS Software
 ESTEC (Netherlands) |
<table>
<thead>
<tr>
<th>Date Range</th>
<th>Event Description</th>
<th>Location(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-10 Dec-2010</td>
<td>5th ESA Workshop on Satellite Navigation Technologies (NAVITEC)</td>
<td>ESTEC (Netherlands)</td>
</tr>
<tr>
<td>15-17 Feb-2011</td>
<td>ISU 15th Annual International Symposium: The International Space Station: Maximizing the Return from Extended Operations</td>
<td>Strasbourg (France)</td>
</tr>
<tr>
<td>11-13 Apr-2011</td>
<td>JURSE 2011 - Joint Urban Remote Sensing Event</td>
<td>TUM, Munich (Germany)</td>
</tr>
<tr>
<td>15-17 March-2011</td>
<td>ESCCON 2011</td>
<td>ESTEC (NETHERLANDS)</td>
</tr>
<tr>
<td>22-25 March-2011</td>
<td>Sentinel scientific products for Land, Ocean and Cryosphere - Assessment & Consolidation Workshop</td>
<td>ESRIN (Italy)</td>
</tr>
<tr>
<td>09-12 May-2011</td>
<td>7th Aerothermodynamics Symposium</td>
<td>Site Oud Sint-Jan, Brugge (Belgium)</td>
</tr>
<tr>
<td>18-20 May-2011</td>
<td>4th International Conference on Spacecraft Formation Flying Missions & Technologies</td>
<td>St-Hubert, Québec (Canada)</td>
</tr>
<tr>
<td>22-26 May-2011</td>
<td>20th ESA Symposium on European Rocket and Balloon Programmes and Related Research</td>
<td>Hyères (France)</td>
</tr>
<tr>
<td>05-09 Jun-2011</td>
<td>GNC 2011 - 8th International ESA Conference on Guidance, Navigation & Control Systems</td>
<td>Carlsbad, Czech Republic</td>
</tr>
<tr>
<td>08-10 Jun-2011</td>
<td>International Workshop of Planning and Scheduling for Space - IWPSS 2011</td>
<td>ESOC (Germany)</td>
</tr>
<tr>
<td>11-15 July-2011</td>
<td>4th International Symposium on Physical Sciences in Space - ISPS 4</td>
<td>Bonn, Bad-Godesberg, Germany</td>
</tr>
</tbody>
</table>

2. ASPRS Meetings & Workshops

- **November, 2010**
 - ASPRS 2010 Fall Conference
 - Doubletree Hotel at Entrance to Universal Orlando, Orlando, Florida
 - November 15-18

- **May 2011**
 - ASPRS 2011 Annual Conference
 - Midwest Airlines Center/Hyatt Hotel
Milwaukee, Wisconsin
May 1 - 5, 2011
http://www.asprs.org/milwaukee2011/

November 2011
ASPRS 2011 Fall Pecora Conference
Hilton Hotel at Washington Dulles Airport
Herndon, Virginia
November 14-17

March 2012
ASPRS 2012 Annual Conference
Sacramento Convention Center (TBD),
Sacramento, California
March 19-23, 2012

October 2012
ASPRS/MAPPS Fall Specialty Conference
Marriott Tampa Waterside Hotel Tampa, FL
October 29 - November 1, 2012

March 2013
ASPRS 2013 Annual Conference
Baltimore Marriott Waterfront Hotel
Baltimore, Maryland
March 24-28, 2013

May 2015
ASPRS 2015 Annual Conference
Tampa Bay Marriott Waterside Hotel
Tampa, Florida
May 4-8, 2015

11th International Circumpolar Remote Sensing Symposium
Cambridge's Scott Polar Research Institute.

AEG Annual Meeting
Charleston, South Carolina
http://www.aegweb.org

GEOTECH 2010: Spectrum of Visions
Premier Mid-Atlantic Imagery and GIS Conference
George Mason University (Fairfax Campus)
George W. Johnson Center, Dewberry Hall
September 27-28, 2010
LARS 2010 - Latin American Remote Sensing Week
October 4-8, 2010.
Fuerza Aérea de Chile (Chilean Air Force)
http://www.lars.cl/

GEOSS Workshop XXXIX – Forest and Bio-energy
October 4-21, 2010.
Santiago, Chile.
http://www.ieee-earth.org/

Illinois GIS Association (ILGISA)
October 20-21, 2010.
Fall 2010 Conference,
Northern Illinois University, Naperville Campus.
www.ilgisa.org

October 20-21, 2010.
2010 Geospatial Conference, GIS – Partnering for Success
Athens, Georgia

Fifth Session of the International Conference Geotunis 2010.
November 29 - December 03, 2010.
The use of GIS and remote sensing for sustainable development, Tunisia
www.geotunis.org

The European LiDAR Mapping Forum 2010 (ELMF10)
November 30 - December 1, 2010.
The Hague in the Netherlands

May 1-5, 2011.
ASPRS 2011 Annual Conference,
Milwaukee, Wisconsin

May 3-8, 2011.
Gi4DM 2011 - GeoInformation for Disater Management
Talya Convention Center, Antalya, Turkey.
June 26-27, 2011
ISPRS Joint Workshop on 3D City Modelling & Applications
Wuhan University, P.R. China.
Jointly organized by ISPRS WG V/4, III/2, III/4, IV/4, IV/8, LIESMARS of Wuhan University and Urban Planning Information Center of Wuhan

March 19-23, 2012
ASPRS 2012 Annual Conference, Sacramento Convention Center (TBD)
Sacramento, California.

October 9-12, 2011
Archean to Anthropocene – the past is the key to the future
Minneapolis Convention Center, Minneapolis, Minnesota USA.
http://www.geosociety.org/meetings/2011/

3. GRSS EVENTS

International Conference on Indoor Position and Indoor Navigation
15-17 September 2010
Campus Science City

SPIE Remote Sensing 2010
20-23 September 2010
Centre de Congrès Pierre Baudis, Toulouse - France
http://spie.org/remote-sensing-europe.xml?WT.mc_id=Cal-ERS

URSI Commission F Microwave Signatures 2010
04-08 October 2010
Florence, Italy
http://www.ursif2010.org/
Back Cover – From left to right pictures: true-colour image from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite; MERIS image after iceberg calving (see http://www.esa.int/esaEO/SEMYXY4OJCG_index_0.html); ENVISAT image image covering the area east of Moscow, source ESA; Iceberg breaking off Petermann glacier in Greenland (available on http://www.esa.int/esaEO/SEMYXY4OJCG_index_0.html)
Information concerning EARSeL activities can be obtained from

EARSeL Secretariat
Nienburger Straße 1
30167 Hannover, Germany
Tel: +49 511 762 2482
Fax: +49 511 762 2483
Mail: secretariat@earsel.org
Http://www.earsel.org/