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ABSTRACT 
Remote sensing can give information about the configuration and composition of coral reefs, about 
the biophysical parameters of the seas and oceans in which they occur and about the changes 
over time of these elements. This paper deals with the classification of a Landsat7 ETM+ data set 
in order to identify the different bottom types (macro-algae, coral, sea grass and sand) occurring on 
the reefs offshore Hurghada, Egypt. Before classification, the radiance values received at sensor 
are corrected for atmospheric and water column effects. ‘Depth-invariant bottom indices’ are calcu-
lated and form the basis for classification. Besides the bottom type as an ecological classification, 
also a geomorphological classification is made. After contextual editing of the ecological classifica-
tion, both results are combined into an open-ended hierarchical classification scheme. An in-depth 
accuracy assessment still needs to be undertaken but a mean accuracy between 47% and 83% is 
to be expected. 

Keywords: coral reefs, Landsat7 ETM+, Red Sea 

INTRODUCTION 
Although much research has already been done on coral reefs and their degradation, there is still 
“a critical need for detailed monitoring and assessment of reef habitats in order to better document 
where and how coral reefs are threatened and to understand what measures are needed to safe-
guard them” (1). The ideal approach would be ‘multilevel sampling’ (1) where detailed, locally sam-
pled information is extrapolated to wider areas using satellite imagery. Four categories of informa-
tion can be extracted from remotely sensed data: the configuration and composition of the coral 
reefs, the biophysical parameters of the seas and oceans in which the coral reefs occur, and the 
changes of these elements over time (2). 

We have already used different remote sensing techniques to derive information about the location 
of the coral reefs (X-, Y-coordinates) and the depth at which they occur (Z-coordinates, bathy-
metry) (3). The scope of this paper is to investigate the possibilities of mapping different bottom 
types occurring on the reef systems in the Red Sea. On a regional scale, remote sensing contrib-
utes by monitoring the physical, chemical and/or ecological conditions of the Red Sea. Together 
with additional information, these remote sensing based results are combined in a ‘Coral Reef 
GIS’. 

In recent years many studies have dealt with different aspects of coral reef bottom type mapping 
using remote sensing (4-26,29). Although the emphasis is more and more on bottom-up classifica-
tion of coral reefs using hyper-spectral imagery and in situ spectral measurements (10,26,29,30), 
the classic sensor-down approach based on multi-spectral data is believed to have its own merits.  
It has been shown that the descriptive resolution of the Landsat7 ETM+ imagery is suitable for 
coarse level mapping (6,11,13,14) of coral systems where charts are often inaccurate and out of 
date (6), for characterising reef geomorphology and classification on the community level (26), for 
resource inventory, cartographic mapping, baseline environmental monitoring, change detection, 
bathymetry (9) and for first time survey in order to locate areas which need to be surveyed in more 
detail. Even if the additional costs of hardware, software and trained employees are taken into ac-



 EARSeL eProceedings 3, 2/2004 192 

count, the remote sensing approach is still more cost-effective compared to the very labour- and 
time-intensive traditional field-survey methods (59). This is especially important for developing 
countries, where most of the coral reefs occur. 

According to Gitelson & Kondratyev (28) “90% of the contribution to the signal at TOA in the visible 
light depends on atmospheric and water surface properties”. Before the data sets can be used for 
bottom-type classification, some processing steps need to be undertaken in order to deal with the 
atmospheric and water column effects on the signal received by the sensor (16,23,30). 

The radiance at sensor, iL , can be expressed using the following water reflectance model 
(9,31,32): 

      zkf
biisii ie)Ra(LL −⋅+=      (1) 

With: siL : mean deep water radiance 

ia : wavelength-dependent constant accounting for atmospheric effects and water surface  
reflection 

biR : bottom reflectance  

f:  geometric factor accounting for path length trough water; here set to 2 (two-flow 
model) 

ki:  effective attenuation coefficient of water for band i, accounting for absorption by the 
water, phytoplankton, suspended particulates and DOM, and for scattering due to tur-
bidity (9,33) 

z:  depth 

As can be seen from the model, the intensity of light decreases exponentially with increasing 
depth. The attenuation is also wavelength dependent and increases with longer wavelengths 
(9,27,33,41). As a consequence, if depth increases, the signal will be more attenuated and the 
separability of the different classes will decrease. The spectral radiances recorded by the sensor 
will therefore not only be dependent on the reflectance of the substrata but also on depth (9). 

The most important effect on the signal for bottom type classification is believed to be the interac-
tion with the water column. Full atmospheric correction is preferred but, strictly, this is not neces-
sary for classification of a single scene with classification parameters derived from within the scene 
(4,34,35,36). Furthermore, a number of atmospheric correction methods assume a homogeneous 
composition of the atmosphere all over the image. The water column effect, on the contrary, will 
change with different depths even if horizontal and vertical homogeneity is assumed. 

We are using the “depth-invariant bottom index”-technique (31) to perform the water column cor-
rection (6,9,17,22,27,37,38). Other methods of water column correction exist (4,39) but they often 
need ancillary data concerning the composition of the water column (40). For each pair of water 
penetrating bands such an index is calculated and combined to form a base for classification (8). 

This technique is only applicable in clear -Type IA, IB and II- waters (9,37,40,41). This is generally 
not a problem since, as with most of the coral reef environmental conditions (27), the coral reefs of 
the Red Sea occur in clear nutrient-poor waters (42). 

A combined geomorphological and ecological classification has been suggested to be the most 
appropriate for remote sensing of tropical coastal areas (6,9,38). 

As only a coarse ecological classification is meaningful, four main bottom types (sand, macro-
algae, coral and sea grass) are distinguished. The delineation of these bottom types is based on 
the results and schemes used by various authors for remote sensing classification 
(8,9,11,12,17,19,22,25,26,43). The actual ecological classification is based on the 3 depth-
invariant bottom indices. Additionally, Mumby & Edwards (20) advise to add texture layers to im-
prove the classification. Especially a better distinction can be made between the confusing coral 
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and sea grass classes. Sea grass is supposed to have a more homogeneous structure and corals 
more heterogeneous. This is only a relative indication and actual spatial texture statistics that are 
characteristic for reef-bottom types have yet to be determined (25). 

The geomorphological classification is based on a visual digitalisation of the different features. A 
true colour composite of the Landsat7 ETM+ bands 1, 2, 3 and an IHS-optimised colour composite 
in which a shaded depth map has been integrated (4,37,44) are used as a base for digitalisation. 
The different classes are mainly derived from the geomorphological classification schemes worked 
out by Coyne et al. (24) for Hawaii and by Mumby & Harborne (8) for the Caribbean. 

Due to spectral similarities of the different benthic classes, even after conversion to depth-invariant 
bottom indices, misclassifications are frequent due to the low spectral resolution of Landsat7 
ETM+. But as coral reefs often exhibit a predictable geomorphological and ecological zonation with 
gradients of depth and wave exposure (45), contextual editing can be applied (6). Based on the 
geomorphological classification some decision rules can be set up in order to improve the accuracy 
of the coral reef ecological classification. To ensure that this does not create bias or misleading 
improvements to map accuracy, the decision rules must be applicable throughout a data set and 
not confined to the regions most familiar to the interpreter (6). Therefore, only general decision 
rules are applied which are confirmed by observations made by different authors all over the world 
(8,11,20,26,53). 

A hierarchical classification scheme is applied to integrate both classifications. Each polygon in the 
resulting map will be assigned two labels independent of each other. This scheme is open-ended 
meaning that more details can be integrated if new classifications are made based on data sets 
with a different descriptive resolution (6,9). 

METHODS 
Study area 
As a study area, the coral reefs near Hurghada, Egypt, (27°14’N, 33°54’E) situated in the northern 
part of the Red Sea, were selected (Figure 1).  

 
Figure 1. Localisation of the main coral reefs in the study area Hurghada (Egypt);   
Landsat7 ETM+ True Colour Composite (1,2,3) 
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The coral reefs are located in a unique environmental setting. The enclosed Red Sea is completely 
surrounded by deserts, has almost no water input from rivers and hence very stable physical char-
acteristics such as salinity, temperature and water quality (42). Although the coral reefs are not un-
der great natural threat, they are suffering from the negative effects of booming tourism and from 
urban coastal development projects mainly for tourist accommodation and in support of the Egyp-
tian relocation policy. 

Data 
Field survey 
Two field surveys have been completed between August 25th, and August 31st, 2001 and between 
March 28th, and April 4th, 2002. During these campaigns, 420 observations were made at sea. Em-
phasis was put on depth measurements and some bottom type observations were made. X- and Y-
coordinates were measured using a GPS (Garmin GPS 12 XL) in the UTM36-WGS84 coordinate 
system. 

Satellite imagery 
A level-1G Landsat7 ETM+ data set (ID: LE7174041000025450; path/row: 174/041) dating from 
September 10th, 2000 is used to classify the main bottom types occurring in the sublittoral zone of 
the study area. Wavebands 1, 2 and 3 are used as the radiation within these wavelengths is not 
totally absorbed by the water column. The ILWIS 3.0–software is utilised to georeference a sub-
scene covering the study area. As ground control points, 21 out of a total of 63 points measured on 
the land during the two field surveys, are used. The georeference is based on the specific UTM-
coordinate system using a ‘full second order’ equation. 

As most of the algorithms used in this paper are dealing with radiance values, the DN-values (byte 
size) as defined in the spectral bands are converted to radiance values at sensor (W/(m² sr µm)). 
The characteristics for this conversion can be found in the Landsat7 Science Data Users Hand-
book (46). 

Atmospheric and water column correction 
Atmospheric correction 

Before the “depth-invariant bottom index”–algorithm (31) is applied to the radiance bands a rough 
atmospheric correction is applied based on the dark pixel subtraction method (47). Inside optically 
deep water most of the visual light is absorbed. As a consequence, the signal received at sensor is 
nearly entirely composed of atmospheric path radiance and surface reflection. If atmospheric and 
water surface conditions are assumed to be uniform throughout the scene, the mean deep water 
radiance at sensor can be used to remove the atmospheric effect and the effect of surface reflec-
tance on the signal (9,40,48). To determine the mean deep water radiance, an area is selected in 
the data set where depths are known to be greater than 50m (3). As suggested by Armstrong (49), 
2 standard variations are subtracted from the mean in order to account for possible sensor noise 
(Table 1). 

Table 1: Determination of mean deep water radiance 

 Ldeep min Ldeep max Ldeep mean St. dev. Lsi 

Band 1 59.660 71.421 64.55 1.37 61.81 
Band 2 34.573 44.219 38.57 0.98 36.61 
Band 3 19.409 29.736 24.52 1.02 22.48 

 
Water column correction 

The exponential relationship between radiance and depth as expressed in equation 1, is linearised 
by transforming the atmospherically corrected radiance using natural logarithms (9,31,32,35,38): 

     zkRaLL ibiisii 2)(ln)(ln −⋅=−      (2) 
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If the effect of depth on measured radiance has been linearised and the substratum is constant, 
pixel values for each band will vary linearly according to depth (9) (Figure 2). 

 
Figure 2: Log-transformed, atmospherically corrected radiance band 1 plotted against depth. 

To determine the bottom reflectance, Rbi, equation 2 can be rearranged to: 

     { } iisiibi azkLLR 2)(lnln +−=      (3) 

However, 3 variables (ai, ki, z) remain unknown. The method of Lyzenga (31) does not estimate ki 
for each band but uses a ratio of attenuation coefficients between a pair of bands. This ratio can be 
determined from the data itself and cancels out the need to know ai and z (9). 

In order to define these ratios ji kk  between pairs of bands a selection of pixels over uniform sub-
stratum but with variable depth is needed (9,38). A sandy bottom type is preferable (9) as it is fairly 
easily recognisable by the interpreter. Edwards (38) selects areas of homogeneous sandy 
substrate, but Maritorena (27) prefers to determine the ratio as the mean of ratios defined between 
pairs of pixels. We have selected a number of pixels that correspond to the field measurements 
made. In that way, we ensure a total coverage of depth over a fairly homogeneous sandy sub-
strate. 

Another criterion in selecting pixels is that saturation or total absorption in one of the bands should 
be avoided (38). This means that pixels over very shallow (<1 m) or very deep areas are dis-
carded. Optically deep water is determined by the maximum depth of penetration of each band as 
calculated by Vanderstraete et al. (3). 

Table 2: Maximum depth of penetration for each radiance band 

 Maximum depth of penetration (m)
Band 1 21.4 
Band 2 16.8 
Band 3 5.2 

 
As a result, 196 points between 1 and 16.8 m are selected for the determination of ratio 21 kk ;and 
79 points between a depth of 1 and 5.2 m for the determination of ratios 31 kk  and 32 kk . 

The selected pixel radiances can be represented on a bi-plot of 2 log-transformed radiance bands i 
and j (Figure 3). As the relationship between radiance and depth has been linearized and the sub-
stratum is constant, the pixels will fall ideally on a straight line. The slope of this ‘straight line’ 
represents the relative amounts of attenuation in each band and thus the requested ratio ji kk  

(38). In reality, however, the points are not falling on a perfect line due to natural heterogeneity of 
the different bottom types, variations in water quality, surface roughness, etc. (38) (Figure 3). 
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Figure 3: Bi-plot of 2 log-transformed, atmospherically corrected radiance bands 
To determine the ‘straight line’ the least squares regression is not used as the result will depend on 
which band is used as the dependent variable (38). Instead, rather than calculating the mean 
square deviation from the regression line in the direction of the dependent variable, the regression 
line is placed where the mean square deviation is minimised (38): 

     12 ++= aakk ji       (4) 

      ijjjiia δδδ )( −=       (5) 

with:  δii = variance of band i 

δij = covariance of bands i and j 

Table 3. Variance within each radiance band 

 Band 1 Band2 Band3
Variance δii 0.259 0.130 0.462 

Table 4. Determination of ratio ki/kj 

 Ratio 1/2 Ratio 1/3 Ratio 2/3 
Covariance δij 0.328 0.149 0.232

aij -0.293 -1.331 -1.713
ki/kj 0.75 0.33 0.52

 
The different ratio-values (Table 4) are in accordance with the values summarized by Green et al. 
(9). 

If different bottom types were represented in such a bi-plot, they would all be represented by an-
other, similar line in which variation along the line would only indicate changes in depth (Figure 4). 
These lines will differ in position since each bottom type has a different reflectance. The gradient of 
each line would be identical since the ratio of attenuation coefficients is not dependent on bottom 
type (9,38). The y-intercept of each line is then used as an index of bottom type independent of 
depth.  

As not all pixels lie along a perfectly straight line (Figure 4), each pixel is assigned to an index of 
bottom type by connecting it to the Y-axis along a line of gradient ki/kj. In this way the depth-
invariant index is scaled to the y-intercept (9,38). Based on this value on the Y-axis, representing 
the index of bottom type, the pixels are then classified. As a consequence the classification will no 
longer be based on the bottom spectral characteristics. Lyzenga (31), and also Maritorena (27), 
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perform an additional orthogonal rotation to align the y-axis along the ki/kj gradient. However, such 
a refinement does not change the functionality of the process (9). 

 
Figure 4. Difference in depth-invariant bottom index between two bottom-types 
The depth-invariant bottom index (DIB) is defined as: 
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With:  band i along the y-axis and band j along the x-axis. 

)ln( siii LLX −= : log-transformed atmospherically corrected radiance 

ji kk : ratio of attenuation coefficients 

Prior to implementation it is suggested to mask out land, clouds and deep water (17,27,38). A land 
mask, generated from the digitised coastline (3), is applied and all land pixels are set to a value of 
zero. In our findings, however, the results are not improved by masking out the deep water areas 
before implementation. Therefore the deep water mask will only be applied to the final resulting 
classification. 

Some values of depth-invariant bottom indices are negative, so an offset is incorporated to make 
all data positive (9). Furthermore, ILWIS 3.0 requires byte-maps to perform a supervised classifica-
tion, hence the index-values are rescaled to the range [0,255]. 

Classification 
Ecological classification 

Because of the relatively coarse descriptive resolution of Landsat7 ETM+ imagery, only a coarse 
level classification can be achieved. The five main classes that are distinguished are summarized 
in Table 5. 

Although the classification is no longer based on spectral characteristics but on depth-invariant bot-
tom indices, a differentiation between intertidal and subtidal sand has been made because of the 
important spectral differences between submerged and exposed sandy substrate. 

A supervised, maximum likelihood classification is effected on a map list containing 3 land-masked 
depth-invariant bottom indices and 3 texture layers calculated for each DIB. The texture of the ob-
jects is defined by the variance within the data (20). A 3*3 (20) variance filter is applied on the 
three depth-invariant bottom indices. In contrast to the depth-invariant bottom indices calculated 
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earlier, the DIB’s used here, are calculated without applying a land mask. The added mask creates 
artificially high variance along the coastline. This would have a negative effect on the classification. 
The texture maps are then converted to image-domain [0,255] using a histogram equalisation. 

Table 5. Main ecological bottom-type classes 

Level 1    Level 2 
Bare substrate:  sand intertidal 
    sand subtidal 
Benthic community:  macro-algae dominated 
    coral dominated 
    sea grass dominated 
Land 
Deep water 
No data 

 

Geomorphological classification 

An adaptation of the geomorphological classification schemes worked out by Coyne et al. (24) for 
Hawaii and by Mumby & Harborne (8) for the Caribbean is given in Table 6. 

Table 6. Main geomorphological classes 

Class     Description 
 1. land      as defined by the land mask 
 2. lagoon shallow area (relative to the deeper water of the bank/shelf) pro-

tected from high-energy waves by a reef crest 
 3. patch reef relatively small coral formations with unclear morphology formed by 

hard corals or dead coral colonised by new organisms 
3.1 dense patch reef areas of aggregated coral colonies where colonies cover more than 

70% of the benthos (8) 
3.2 diffuse patch reef areas of dispersed coral colonies where less than 30% of the ben-

thos is covered by coral colonies (8) 
 4. back reef shallow zone at the landward edge of a reef crest often formed by a 

pavement of hard substratum with or without rubble and frequently 
covered with algae.  

4.1 reef flat (24) back reef between the landward edge of the reef crest and the 
shore 

 5. reef crest the shallowest and often emergent part of a reef; it separates fore 
reef from back reef and lagoon. 

 6. fore reef zone seaward of reef crest (often difficult to distinguish from 
bank/shelf) 

6.1 spur and groove spurs are usually formed by accreting hard coral and calcified green 
algae whereas grooves usually contain sand or bare bedrock (9) 

 8. bank/shelf    zone with depths to 20-30m without clear reef characteristics 
 9. deep water zone with depths greater than 30m where no significant spectral 

reflectance is recorded by the Landsat7 ETM+ sensor 
10. unknown    class containing areas of undefined nature 

 
A true colour composite and a ‘depth-improved’ colour composite are then used to visually digitise 
the different geomorphological features. In order to create the shaded depth map used in the 
‘depth-improved’ colour composite, a shadow filter has been applied on a bathymetric map of the 
area (3). Best results are returned when a filter initialising the sun in the northeast is applied. This 
direction is in line with the dominant surface currents in the area (42). The shaded depth map is 
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then fused with ETM+ band 1 and 2 using a classic IHS data fusion technique (50-52) in which the 
intensity band is replaced by the shadow map (4,37). 

The different geomorphological features are then delineated based on their spectral and geomor-
phologic, i.e. bathymetric, characteristics. 

Post-classification: contextual editing 

Three decision rules are applied in order to improve the ecological classification: 

- If the ecological class “sea grass dominated” occurs on the geomorphological class “fore 
reef”, it is replaced by the ecological class “coral dominated” (8,20,26). 

- If the ecological class “sea grass dominated” occurs on the geomorphological class “reef 
crest”, it is replaced by the ecological class “coral dominated” (8,20,26,53). 

- If the ecological class “sea grass dominated” occurs on the geomorphological class “back 
reef” and depth is lower then 1.2m, it is replaced by the ecological class “macro-algae 
dominated” (8,11,26). 

Finally, two masks are applied to deal with misclassifications in land and deep-water areas. The 
land mask is the same as the one used for the calculation of the depth-invariant bottom indices. 
The deep water is defined during geomorphological mapping as those areas where no significant 
reflection of the seabed is noticed. 

RESULTS 
Effect of water column correction 
If Figures 5 and 6 are compared, the effect of the water column correction can clearly be seen. In 
Figure 5 the raw radiance data are represented as a function of depth. A distinctive exponential 
relationship can be noticed between them, especially in the first metres. The depth-invariant bot-
tom indices, on the contrary, are almost totally independent of depth (Figure 6). 

 
Figure 5: Radiance as a function of depth 



 EARSeL eProceedings 3, 2/2004 200 

 

Figure 6: Depth-invariant bottom indices as a function of depth 

Ecological classification 
The result of the ecological classification before contextual editing is shown in Figure 7. The class 
“no data” is due to pixels with radiance values, Li, smaller than mean deep-water radiance, Lsi. 
These values only occur over deep water and do not affect the overall classification result. 

 
Figure 7: Bottom-type classification of the Shaab el Erg-sub area 
Geomorphological classification 
The result of the geomorphological classification is represented in Figure 8. The original polygon 
map is rasterised to 30m in order to match it with the resolution of the ecological classification. 
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Figure 8: Rasterised geomorphological classification of Shaab El Erg 
 
Ecological classification after contextual editing 

 
Figure 9. Bottom-type classification of the Shaab el Erg-sub area after contextual editing 
After the application of the defined decision rules, the resulting ecological classification is given in 
Figure 9. The ‘deep water’ class represents areas that are recognised on the geomorphological 
classification but that lie lower than the maximum depth of penetration of each radiance band (3). 
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Hierarchical classification 
As a final result the ecological and geomorphological classifications are integrated into one hierar-
chical classification map (Figure 10). The colours represent the geomorphological features; the 
patterns symbolize the associated bottom-types. 

 
Figure 10: Hierarchical classification map of the Shaab el Erg-sub area. 

DISCUSSION 
Mumby (6) has pointed out the significant improvement to map accuracy for Landsat TM bottom-
type classification at coarse and intermediate descriptive levels when a water column correction is 
applied. The effect of water column correction is clearly shown in Figure 6. This improvement is 
also statistically proven when the coefficients of variation are compared between the original radi-
ance bands and the resulting depth-invariant bottom indices (9,38). 

Table 7. Overview of Coefficients Of Variation (COV) based on 79 ground control points;  
* based on 247 ground control points 

 COV 
Radiance 1 0.160399* 
Radiance 2 0.186056 
Radiance 3 0.2752 
DIB12 0.105776 
DIB13 0.041860 
DIB23 0.042636 

 
As can be seen in Table 7, the COV of each depth-invariant bottom index is much lower than the 
COV of the corresponding radiance bands. This is the result of the elimination of the variation 
caused by the water column (9,38). Nevertheless it should be noted that the water column correc-
tion is optimised for a sandy bottom type. This will lead to an improvement for mapping sand habi-
tats but could possibly also lessen differentiation between the other bottom-types (6). 
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Mumby (20) is doubtful about the positive effect of integrating texture layers into the ecological 
classification.  Due to the use of a 3·3 variance filter the classification scale is reduced to 90*90m 
in the case of Landsat7 ETM+. This texture resolution is believed to reflect interclass rather then 
intraclass heterogeneity (20). Nevertheless, in our findings, the use of texture layers in combination 
with the depth-invariant bottom indices, does improve the resulting classification map. 

The effect of contextual editing has already been pointed out by Mumby (6). Especially in combina-
tion with water column correction, the coarse level classification of a Landsat data set is signifi-
cantly improved (6). A quantitative estimation of the effect of all these elements can only be made 
after an accuracy assessment has been made. 

To test accuracy, we need a sufficiently large set of independent field observations (9). Previous 
field observations have primarily concentrated on depth measurements over homogeneous sandy 
substrates (3). Hence, field observations over other bottom types were limited and are insufficient 
for a thorough accuracy testing. A new field survey is planned in the near future to deal with this 
problem. 

However, the classification of bottom type can never be 100% accurate. First of all, the nature itself 
of the bottom types is very complex (9). The boundaries of ecological habitats tend to be gradien-
tial and not clear, distinct lines. The delineation and definition of habitats will therefore always be 
slightly arbitrary. Even with a bottom-up classification (26) and a full spectral resolution of 1nm over 
a spectral range from 400 to 700nm, Hochberg (26) reached only a maximum accuracy of 83%. He 
also determined a maximum mean accuracy of 47% with Landsat7 ETM+ if 12 bottom types are 
distinguished (26). 

What are then the main problems in the classification of bottom types based on remote sensing? 
First of all errors are made due to the basic assumption of vertical and horizontal homogeneity of 
the atmosphere and water column (25,29). Besides, not only the gradient between different bottom 
types is important, but also the structural composition and geomorphology of the reef. The classifi-
cation accuracy is limited by the slope and aspect of the benthic topography (29), the 3-D ar-
rangement of the reef (25) and the resulting effect of light and shadow (25,54). 

The bottom types of the benthic community have also a remarkable spectral similarity. As the sym-
biotic zooxanthellae and not the coral polyp-tissue are mainly causing the colour of living hard and 
soft corals (15,17,20), the spectral signature of the coral becomes similar to that of the sea grasses 
and macro-algae. This makes the discrimination between these bottom types even more problem-
atic taking the low spectral resolution of the Landsat7 ETM+ into account (25). 

The time lag between data acquisition and field survey also can cause some errors (11,21,55-57), 
although Mumby (20) shows that habitats most probably do not move more then 10 metres in a 
couple of years. 

A multi-spectral distinction between coral, sea grass, macro-algae and sand can only be made up 
to the depth at which the red band is totally attenuated (19,58). Areas deeper than ± 5 m are then 
only classified on DIB12, as this depth-invariant bottom index is not based on the attenuated red 
radiance band. As a consequence, from a depth of 10-15m only sand (26) or prominent reef fea-
tures (19,40,58) can be distinguished and accurately classified. 

CONCLUSIONS 
The main constraints with the classification of reef bottom type based on a Landsat7 ETM+ data 
set are due to the assumptions inherent to the methods used, the descriptive resolution of the sen-
sor and the natural, structural and spectral characteristics of the study object. Nevertheless, it is 
possible to make a coarse level ecological and geomorphological classification of the coral reefs 
offshore Hurghada, Egypt. The bottom type map has been improved by the application of a water 
column correction technique, by the integration of texture layers in the supervised classification 
and by post-classification contextual editing. The use of a true colour composite in combination 
with an IHS-optimised colour composite with integrated depth map, makes it possible to accurately 
delineate the different geomorphological features of a coral reef system. Finally, it is important to 
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integrate both classification results into an open-ended hierarchical classification scheme in order 
to update the maps with more detailed information from classification of satellite imagery with a 
higher descriptive resolution or from detailed field surveys and other ancillary information sources. 
A thorough accuracy assessment must be worked out in the near future in order to quantitatively 
estimate the usefulness of the maps produced. 
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