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ABSTRACT  
In order to verify the possibility of estimating soil parameters by means of SAR (Synthetic Aperture 
Radar) images at C-band, an experimental campaign was carried out in two agricultural areas in 
Italy (Alessandria and Montespertoli) during ENVISAT/ASAR passages and the results obtained 
after a preliminary data analysis are described in this paper. First of all, a classification of the 
Alessandria area, obtained by combining HH and HV polarizations of a SAR C-band image col-
lected on 7 November 2003, was performed with the identification of five surface types. A prelimi-
nary investigation on the sensitivity of the backscattering coefficient σo in HH polarization to the 
ground measurements of soil moisture was carried out and confirmed a certain correlation be-
tween these two parameters. Finally, a statistical algorithm for the retrieval of soil moisture has 
been tested on the Montespertoli area. This method, based on the Bayes theorem, made it possi-
ble to retrieve five classes of soil moisture content, with a mean error of less than 10%. 

Keywords: Soil moisture, radar backscattering coefficient, ENVISAT ASAR 

INTRODUCTION  
Soil moisture plays a critical role in the surface energy balance at the soil-atmosphere interface 
and is a key state variable that influences the redistribution of the radiant energy and the runoff 
generation and percolation of water in soil. We know that local measurements of soil moisture 
content (SMC) are strongly affected by spatial variability, besides being time-consuming and 
expensive. Moreover, the use of hydrological models for extending the forecast of soil moisture 
over larger areas is not easy, and depends on the homogeneity of the selected areas and the 
information available about them (soil properties, i.e. hydraulic characteristics, and permeability, 
together with meteorological and climatological data, etc.). The possibility of measuring soil mois-
ture on a large scale from satellite sensors, with complete and frequent coverage of the Earth’s 
surface is therefore extremely attractive.  

The sensitivity to SMC of the radar backscattering coefficient σ°, measured at low microwave fre-
quencies is a well-known phenomenon, already investigated by many scientists. Indeed, research 
activities carried out worldwide in the past have demonstrated that sensors operating in the low-
frequency portion of the microwave electromagnetic spectrum (P- to L-band) are able to measure 
the moisture of a soil layer, the depth of which depends on soil characteristics and moisture pro-
file, and is of the order of some tenths of the wavelength. The most significant information was 
obtained by combining different frequencies, polarizations, and incidence angles (1,2,3). Unfortu-
nately, P- and L-bands are not still available from current satellite sensors, which, moreover, oper-
ate in a single-frequency band. Thus, in this paper, the research for the retrieval of soil moisture 
has been focused on the potentials of C-band, which is operational on ERS-2, RADARSAT, and 
ENVISAT satellites. The radar signal at C-band is still sensitive to SMC, but it is significantly influ-
enced by vegetation and surface roughness, so that the estimation of spatial variations of moisture 
with the accuracy requested in many applications is still rather problematic, and needs the use of 
correcting procedures.  
In this paper we present a statistical algorithm based on the Bayes theorem for retrieving SMC 
from the images of the ENVISAT Advanced Synthetic Aperture Radar (ASAR), collected on two 
agricultural areas in Italy: Alessandria, in the North-west, and Montespertoli, in Central Italy (see 
Figure 1). Reference values of the backscattering coefficient σo, required by the Bayesian ap-
proach, have been generated through the Integral Equation Model (IEM) by Fung (4) and the re-
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sults compared with ground data collected on both test areas during the ENVISAT acquisitions, 
showing a general agreement between measurements and estimates of the soil moisture content. 

 
Figure 1: The two test areas selected for the experiment (Landsat image, copyright Eurimage, 
courtesy of Planetek Italia). 

DESCRIPTION OF THE EXPERIMENT 
Two agricultural areas have been selected in Italy for performing the experiments: Alessandria in 
Northern Italy and Montespertoli in Tuscany. Three ground campaigns were carried out in 2003: 
one in the Alessandria area in November 6-7, 2003 and two in Montespertoli area on June 11 and 
November 20, 2003. In Alessandria, ground measurements were carried out in two areas along 
the Scrivia river: Castelnuovo Scrivia, at the confluence between the Scrivia and Po rivers, and the 
Borbero sub-basin, a small affluent of Scrivia, close to the border of the Liguria region. Ground 
measurements included: soil moisture, by means of a Time Domain Reflectometry (TDR) probe 
and gravimetric samples, collected as a reference calibration of TDR; roughness measurements 
by means of a needle profilometer and some vegetation parameters (plant height, density, leaf 
number).  
Some photos of the fields were also gathered. Crops present in the areas were: wheat, fodder 
crops, alfalfa, corn and sugarbeet. SMC values were rather high in November 2003 (higher than 
35%). A series of  ENVISAT/ASAR images were acquired from these areas (see Table 1). 
As an example, Figure 2 shows an ENVISAT composite image collected in November of the Ales-
sandria area, with HH/HV polarizations. From the figure, a preliminary land classification is feasi-
ble: black zones point out the presence of water (rivers, lakes), light yellow pixels correspond to 
urban areas, green to forest or dense vegetation (mainly present, in fact, along the rivers), brown 
to bare, smooth fields, and red to bare, rough fields. 
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Table 1: List of the ENVISAT/ASAR images collected on  the Italian test areas (IMG = Image 
Mode Geocoded Ellipsoid Image; IMP = Image Mode Precision Image; APP = Alternating Polariza-
tion Mode Precision Image). 

Test sites Dates Product Polarization 
ALESSANDRIA December 8, 2002  IMG VV 
 July 6, 2003 IMP VV 
 August 29, 2003 APP HH/VV 
 November 7, 2003  APP HH/HV 
MONTESPERTOLI June 11, 2003  APP HH/HV 
 November 20, 2003  APP HH/HV 

 

 
Figure 2: ENVISAT/ASAR composite RG image in APP (HH, HV polarization) acquired on Novem-
ber 2003 of the Alessandria area. R = HH polarization, G = HV polarization. Colours roughly corre-
spond to different surface types: yellow = urban areas; black = water bodies; red = rough bare 
soils; brown = smooth bare soils; green = dense vegetation, forests. 

SOIL MOISTURE RETRIEVAL 
In order to compare σ° with data collected on the ground, ASAR data have been geocoded with a 
regional map of the site (scale 1:10000), so that the correct areas, where the ground measure-
ments were carried out, have been selected with the pixel precision. 
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Direct correlation between σ° in HH polarization and SMC is shown in Figure 3. Data refer to the 
Alessandria area in November 2003 when most fields were bare soils. The spread of data is sig-
nificant, as it can be observed from the value of correlation coefficient (r= 0.7), probably due to the 
surface roughness of bare soils; most of them were in fact ploughed. The result is in any case 
comparable to those obtained in the past with similar data sets (e.g. (3,5). Another reason for the 
rather scant correlation between σ° and the SMC may be attributed to the different sampling prin-
ciples of TDR and radar. TDR integrates over a soil layer of several centimetres, whereas the ra-
dar supposedly investigates only a soil surface layer of a few centimetres. Moreover, in November 
2003, the soil surface was dryer than the underlying layers, due to the evaporation of the bare 
worked surfaces. 
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Figure 3: σ0 (C band, HH polarization) as a function of the soil moisture content SMC. The regression 
equation is: σ°=0.38 SMC - 16.2, with a correlation coefficient r=0.71. 

BAYES APPROACH 
The Bayesian approach was applied to the retrieval of soil parameters from σ° at C band in HH 
and VV polarization. In particular, the attention was focused on the retrieval of the dielectric con-
stant of soil from which the moisture content can be estimated by means of the Dobson et al. 
model (6). Applying Bayes theorem, the conditional density function ),|,,( o

HH
o
VV σσε lcsP , which 

represents the probability to have these values of ground parameters once given the measured σ°, 
can be expressed as: 
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where:  ε   is the dielectric constant of the soil,  
  s   is the standard deviation of the soil heights, i.e. a surface roughness index,  
   lc  is the soil correlation length,  
   ),( o

HH
o
VVP σσ  is the joint density of o

VVσ  and o
HHσ . 

),,( lcsPprior ε  includes all the a priori information about these parameters, such as estimates based 
on data from other instruments. In cases where no estimate is available, it is possible to apply the 
‘principle of indifference’, by associating each of these parameters a uniform density function in 
the interval of possible values. 
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),,,( lcsP o
HH

o
VVpost εσσ  represents the probability to measure o

VVσ  and o
HHσ  once given ε, s, lc. 

This function can be expressed in a more convenient form considering the radar measurements as 
theoretical values affected by a multiplicative noise, modelled by means of two random variables 
independent of the soil parameters ε, s and lc, as follows: 

           o
theoVV

o
measVV R ,1, σσ =       (2a) 
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where o
measVV ,σ  and o

measHH,σ  are the backscattering coefficients retrieved by the SAR sensor;  
o

theoVV ,σ  and o
theoHH,σ  are theoretical backscattering coefficients computed by the IEM model and 

R1, R2 are two random variables representing the measurement noise, for both VV and HH polari-
zations. With this assumption, ),,,( lcsP o
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Having defined the probability density function of the errors P(R1,R2), the algorithm is able to gen-
erate the “optimal estimator” for the dielectric constant of soil (7,8,9), giving as input the measured 
values of the oσ  in H and V polarization:  
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where ε  is the estimated dielectric constant. 

Tests of the algorithm were carried out by means of a dataset of backscattering measurements 
collected over the Montespertoli test area during the MAC 91 and SIR-C/X-SAR missions in 1991 
and 1994. In order to use the algorithm for the ENVISAT/ASAR sensor, only backscattering coeffi-
cients at C band in HH and VV polarization and at low incidence angle of 25° were considered (3). 
To provide the theoretical backscattering used as reference in Eqs. (2a,b), the IEM model by Fung 
(4) was used. This model is able to obtain backscattering coefficients for a wide range of natural 
soil surfaces, where the validity range is given by the condition Ks <3, where K=2π/λ is the wave 
number, λ is the radar wavelength in centimetres and s is the standard deviation in centimetres 
defined above. As input to the model, ground measurements of SMC and surface roughness (both 
s, height standard deviation of the surface, and lc, correlation length), simultaneously with the ra-
dar acquisitions, were used, together with additional information such as incidence angle and fre-
quency. 
To define the probability density function of the errors P(R1,R2), a sub-dataset of 40 elements was 
extracted and used as reference. For each SAR measurement of this dataset, corresponding 
ground measurements were used as input of IEM to obtain theoretical backscattering values used 
in Eq. (4) to calculate mean and variance of R1 and R2. The shape of the PDF was assumed 
Gaussian, because this function fits acceptably the considered sub-dataset.  
The other a priori information required by the method is the probability density function of the soil 
parameters ε, s, and lc. According to the values of the sub-dataset, ),,( lcsPprior ε  was assumed 
uniform over the range 4 < ε < 20, 0.5 cm< s < 1.2 cm and 2 cm < lc < 8 cm. Thus, the algorithm is 
able to generate the “optimal estimator” for the dielectric constant of soil, using as input the meas-
ured oσ  in HH and VV polarization. From ε estimates, the SMC values are obtained by inverting 
the Dobson et al. model (6). 
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Having characterized the statistical distribution of the errors R1 and R2, preliminary tests were car-
ried out on the remaining part of the dataset, composed by several tenth of measurements. Due to 
the complexity of the equation which includes a triple integration operation, the computing time 
required by this method is of about 1 second for each point (pixel), making this algorithm unusable 
for real time prediction from wide SAR images. Therefore, a first simplification of the algorithm was 
carried out, by substituting the probability density function of the correlation length with fixed val-
ues of lc in the interval 1 cm < lc < 8 cm.  

Due to the small size, in statistical terms, of the dataset considered, the results were not sufficient 
t as an evaluation the suitability of the algorithm; however, they show that lc is a key factor for the 
convergence of the method, since the error introduced from a bad estimate strongly affects the 
retrieval. Best results were obtained by imposing lc = 4 cm, a value close to the average of meas-
ured lc over the whole sub-dataset. 
In order to obtain a statistically significant dataset, and to better evaluate the Bayesian algorithm, 
the Montespertoli data were increased adding 3000 simulated values of backscattering coefficient 
with the same statistical characterization of the ground measurements. Simulated values of back-
scattering were obtained by means of Eq. (2), by multiplying the outputs of IEM for random vari-
ables having the same distribution, mean and variance of the R1 and R2 noise functions above 
described and derived from the sub-dataset of 40 elements. 
These simulated values were added to the data and used as input for testing the Bayesian algo-
rithm. Although with a large spread of data, the retrieved SMC values followed the same trend of 
ground measurements, as shown in Figure 4. The obtained regression equation is: 
SMCe=1.33 SMCm - 6.68, with a correlation coefficient r = 0.78.  
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Figure 4: Comparison between the soil moisture values estimated with the Bayesian algorithm and 
the soil moisture measured on ground. 

In order to reduce the spread, SMC values were grouped in five classes: for each class, averaged 
values of measurements and corresponding estimates have been calculated and compared. The 
result is shown in the histogram of Figure 5 (10). We can note that all the classes were correctly 
retrieved, although the method slightly overestimates the lower values of SMC (< 10%) and un-
derestimates the higher ones: however, the mean values of SMC for each class were retrieved 
with an error ranging between 1 and 10%. 
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Figure 5: Comparison between five classes of the soil moisture measured on ground and com-
puted with the Bayes algorithm (10). 

CONCLUSIONS 
The analysis of SAR data collected on both Alessandria and Montespertoli areas, in Italy, con-
firmed a rather good sensitivity of C-band radar backscattering coefficient both to the surface 
characteristics and to soil moisture content. The direct comparison between oσ  in HH polariza-
tion, and the on-ground measured soil moisture showed a general agreement between the two 
parameters, although the obtained correlation coefficient is not very high.  
The use of a statistical algorithm, based on the Bayes theorem, in spite of a large spread in the 
data, made it possible to retrieve five classes of soil moisture from SAR images, with a mean error 
of less than 10%  
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