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ABSTRACT 
This paper reports on oil classification with fluorescence spectroscopy. The investigations are part 
of the development of a laser-based remote sensor (laser fluorosensor) to be used for the detec-
tion and classification of oil spills on water surfaces. The polychromator of the fluorosensor has six 
channels for measuring signals that represent the spectral fluorescence signature of the detected 
oil in the UV/VIS wavelength range following excitation at 355 nm wavelength. The investigation of 
the oil classification is based on the shape of the signature of the oil detected by these channels. 
The investigation uses three methods to examine crude oils, heavy refined oils, and sludge oils: 
the channels’ relationships method (CRM); artificial neural networks (ANNs); and support vector 
machines (SVMs). This was done on a laboratory database of oil fluorescence spectra.  

The database and the input fluorescence signature of the oils play a very important role in the effi-
ciency of the classification method. If the input fluorescence of the oil does not fit into one of the 
classes already included in the database or if it is a completely new and previously not considered 
signature, then the training process for classification must always be redone. Generally, all three 
methods yield promising results and can be used for the detection and classification of oil spills on 
water surfaces. The channels’ relationship method provides a meaningful classification of the 
available spectra, according to a rough oil type estimation. More specific substance information 
can be achieved with ANNs and SVMs. Both SVMs and ANNs prove to be efficient, fast, and reli-
able and have real-time capabilities. The SVM method is faster and more stable than ANN. There-
fore, it is considered to be the most convenient method for classifying spectral information. 

Keywords: Artificial Neural Networks, Multi Layer Perceptron, Support Vector Machines, oil fluo-
rescence. 

INTRODUCTION 
Artificial neural networks (ANN) were involved in many applications to solve real world problems. In 
commercial purposes, ANNs can be applied to predict the profit, market movements, and price 
levels based on the market’s historical dataset. In medical applications, doctors can evaluate the 
situation of many patients depending on the historical dataset of other patients who had the same 
illness. In industry, engineers can apply ANNs to solve many engineering problems such as classi-
fications, prediction, pattern recognition, and non-linear problems where the issues are very difficult 
or might be impossible to solve through normal mathematical processes. ANNs were applied to 
predict slant path rain attenuation (1), to predict the rain attenuation on an Earth-space path, to 
predict the water quality index (WQI), and to signal predictions in a nuclear power plant (2). They 
were also used in face recognition (3). In medical applications, ANNs were utilised in detecting 
brain disease (4) and DNA ploidy, as well as cell cycle distribution of breast cancer aspirate cells 
that are measured by image cytometry and analysed by ANNs for their prognostic significance (5). 

Support vector machines (SVM) are modern and effective tools that have already been examined 
to solve difficulties such as classification problems and pattern recognition. In SVMs there is no 
need to select features from several applications. SVMs were applied to medical binary classifica-
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tion problems (6), to recognise radar emitter signals (7), and to visual speech recognition (8), and 
in many other cases. 

This paper reports on oil classification with fluorescence spectroscopy. The objective is to classify 
the oil fluorescence spectra based on a laboratory dataset of fluorescence spectra of several oil 
classes (sludge, crude and heavy oil). The classification was carried out using the following three 
methods: channel relationship method (CRM), artificial neural networks (ANNs), and support vector 
machines (SVMs). 

METHODS 
Within the EU-funded project FLUOSENSE a laser fluorosensor has been developed for the detec-
tion of oil films on water surfaces via fluorescence excitation over distances of 50 to 100 m (9). The 
instrument consists of a UV-emitting (355 nm wavelength) pulse laser for target illumination, a tele-
scope for the efficient collection of light from the illuminated area, and a polychromatic grating 
spectrometer equipped with photomultipliers for a sensitive detection of spectral information in six 
UV/VIS channels at 366-395 nm (channel 1), 386-425 nm (channel 2), 442-486 nm (channel 3), 
492-552 nm (ch annel4), 574-644 nm (channel 5) and 630-700 nm (channel 6) (Figure 1). 

 
Figure 1: Optical design of the polychromator.  

For examining the oil type classification capability of the spectrograph, a dataset of 117 spectra of  
16 sludge, 80 crude and 21 heavy refined oils were measured with a Perkin Elmer LS50 laboratory 
spectrofluorometer. The measuring procedure used for this dataset is the same as documented in 
an earlier data catalogue (10) but includes also the 355 nm excitation wavelength which was not 
considered in (10). Each substance sample is analysed with 355 nm excitation wavelength and 
386-700 nm emission bandwidth. The geometrical orientation of the sample cuvette with respect to 
the excitation and emission ray path differs from the conventional 90 degree configuration. Be-
cause of the high absorbance of samples, the cuvette is oriented such that fluorescence is excited 
and registered through a single side of the cuvette, with a cuvette holder termed front surface as-
sembly by some manufacturers (10). This configuration corresponds well to the geometry of laser 
fluorosensor measurements of oil films on water, and therefore the dataset can be used as a basis 
for fluorosensor data interpretation. 

The absolute fluorescence efficiency of the oils is of minor relevance since the signal intensities 
measured with the laser fluorosensor would depend on other factors as well, e.g. on the target dis-
tance and the oil film thickness. Therefore, spectral intensities are discarded by normalising the 
integral over the entire emission spectrum to the value of 1, and these normalised spectral signa-
tures are used for classification. In the next step, the normalised spectra are integrated in the limits 
of the detection channels 2 to 6, to simulate data which are measured by the laser fluorosensor in 
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the presence of these oils (Figure 2). Channel 1 is not further considered here since in practical 
fluorosensor applications over water this signal includes the water Raman scattering which is use-
ful for oil film thickness measurements (11,12) and due to this underlying signals less specific for 
oil type classification. 

 

 
Figure 2: Examples of oil fluorescence spectra (355 nm excitation) spectrally grouped according to 
the detection channel wavebands of the laser fluorosensor. 
The classification is carried out using three methods: artificial neural networks (ANNs), support 
vector machines (SVMs), and channel relationship method (CRM). The normalised fluorescence 
signatures detected by the channels of the polychromator are considered to be the inputs to the 
classification method to determine their output (oil class).  

Channel Relationship Method (CRM)  
The channel relationship method (CRM) is a method relating the relative intensity of the normalised 
oil fluorescence detected by the polychromator channels. Some fluorescence signals have a strong 
appearance at a certain wavelength and a weak appearance in other wavelength ranges. Fluores-
cence signals which have shapes similar to each other form their own group in a diagram. We do 
expect that such oils where the fluorescence signatures are close to each other can be differenti-
ated from other oil classes. In this way it is expected that several oil classes can be identified, and 
only those oils that have signatures which are close to more than one class lead to difficulties in 
evaluating the class of such oils.  

Artificial Neural Networks (ANN) 
Artificial neural networks are powerful tools that can learn to solve problems in a way similar to the 
human brain. ANNs gather knowledge by detecting the patterns and relationships in data and learn 
(or: are trained) through experience, not from programming (13). Figure 3 shows the structure of the 
ANN. It is a combination of many single neurons. The ANN might consist of several thousand artifi-
cial neurons, and the output of one neuron becomes an input to another neuron. Figure 4 shows the 
neuron model of the artificial neural network where the output of such a neuron is given by: 
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Many transfer functions could define  (Figure 5). The transfer function used in this work is the 
tanh function which is among the most popular functions to the neural network design due to its 
mathematical properties such as monotonicity, continuity, and differentiability, which are important 
to the training process (

)(xf

14). 



EARSeL eProceedings 6, 2/2007 118 

 
Figure 3: Structure of an Artificial Neural Network. 

 
Figure 4: Neuron Model of an Artificial Neural Network. 

 
Figure 5: Transfer functions to neural network design.  

There are several types of ANNs according to their structure and learning algorithms. According to 
their structure, ANNs can be classified as feed forward networks and recurrent networks (15). In a 
feed forward network, the neurons are generally grouped into layers. Signals flow from the input 
layer through the output layer via unidirectional connections, the neurons being connected from 
one layer to the next, but not within the same layer (15). In recurrent networks, the output of some 



EARSeL eProceedings 6, 2/2007 119 

neurons is fed back to the same neurons or to neurons in a preceding layer (15). Concerning the 
learning process, the ANN can be classified according to supervised learning, unsupervised learn-
ing or reinforcement. In the supervised model, the ANN requires the output in order to adjust its 
weight. In the unsupervised model, the ANN does not require the output, the ANN adapts purely in 
response to its input. These networks learn and build their structure based on the input. The rein-
forcement learning algorithm employs a critic to evaluate the quality of the neural network output 
corresponding to a given input (15). 

In this paper, the ANN shall estimate the unknown oil class in the laboratory dataset of the different 
oil classes. Multilayer perceptron (MLP) is a well-known type of ANN, which is usually used in clas-
sification problems. In MLP, the neurons are grouped in many layers (Figure 6). In this work, MLP 
with supervised learning has been used. In this approach, during the training process of the net-
work, the network compares its actual results  with the desired output and then computes 
the error (Eq. 2). Through the backpropagation algorithm the error is presented many times to the 
input of the forward activation place, and the process continues until the actual outputs get closer 
to the desired output. The MLP that is used in this work contains three layers: input layer, one hid-
den layer, and output layer. Eq. 2 represents the error calculated for the input vector that is pre-
sented to the feed forward network and Eq. 3 represents the error calculated for all input vectors 
that are presented to the feed forward network. 
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Figure 6: Multilayer Perceptron (MLP). 

The NeuroSolutions software (NeuroDimension Inc., Gainsville, Florida, USA) is used in this work 
to construct the required MLP (16). The constructed network consists of an input layer, a non-
linear hidden layer, and an output layer. The hidden layer and the output layer apply the tanh trans-
fer function.  

The MLP network has been trained based on 111 oil fluorescence signatures of crude, heavy  and 
sludge oils. The cross validation process of the network uses a dataset of nine oil fluorescence 
spectra from the same oil classes. Cross validation is an optional method, it is a highly recom-
mended method for stopping network training. This method monitors the error on an independent 
set of data and stops training when this error begins to increase. This is considered to be the point 
of best generalisation (16). The testing process is defined as data used to evaluate the perform-
ance after the training is complete (16). The trained network then was tested based on three oil 
fluorescence signatures that were not used in the training set from the same three oil classes used 
in the training in order to ensure that the trained network understood the problem. Then, three un-



EARSeL eProceedings 6, 2/2007 120 

known oil fluorescence spectra that were also not used in the training and testing sets from the 
same three oil classes used in the training were fed into the trained network for classification. The 
trained MLP was retrained using the same dataset and then tested. The three unseen spectra 
were re-classified and the results compared in order to estimate the quality of the result and to in-
vestigate the stability of the trained MLP. The number of nodes of the network is the number of ex-
emplars (rows) of the training set equal to 111 and 1000 epochs. Note that the number of nodes is 
configured automatically by the NeuralBuilder (16). 

Support Vector Machines (SVM) 
SVMs are powerful tools for classification that can be considered as an alternative to the mulitlayer 
perceptron. SVMs were first introduced in 1992 (17). A good explanation for the SVMs theory and 
its applications is found in (18). The basic idea is to find the linear classifier called the hyperplane. 
Figure 7 shows many linear classifiers separated in two classes (red and green). There is an ideal 
separating classifier (black line) called hyperplane (maximum margin linear classifier) which can 
increase the space between it and the nearest dataset points of different classes as much as pos-
sible. For this, SVMs are regarded to be margin classifiers. In cases where the classes can be 
separated easily, this kind of support vector machines is called linear support vector machine 
(LSVM).  

 
Figure 7: The best linear classifier (hyperplane). 

For separable classes (Figure 8), a SVM classifier computes a decision function with a maximal 
margin M with respect to the two classes (blue and red classes). There are two planes touching the 
boundary of dataset,  and 1+=+bxw 1−=+bxw . w  is a vector perpendicular on the plane  

. We consider  to be any point on the plane 1+=+bxw 2x 1+=+bxw  and  to be the closest 
point to  on the plane . The line from  to  is perpendicular to the planes. The 

maximum margin of the best classifier can be expressed as 

1x

2x 1−=+bxw 2x 1x

= ⋅2M w w . 

 
Figure 8: Classification of a linearly separable dataset. 
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We consider a dataset: ),.......,1(),,(....,),........,( 11 nyxyx inn ∈∀ . The decision boundaries can be 
found by solving the following constrained optimising problem: 

Minimise 2

2
1 w  subject to:  iii bxwy ∀≥−+⋅ ,01)(      (4) 

The Lagrange Function Formulation of this optimising problem is given by: 
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ix⇒  are not considered to be support vectors. 

In the case of a non-linearly separable dataset (Figure 9), the slack variable iζ  is introduced lead-
ing to a soft margin classifier: 
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The parameter C describes the trade-off between the maximal margin and the correct classifica-
tion (18). This idea leads to the following dual problem 
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One can note that it is similar to an optimisation problem in case of linearly separable data with the 
exception of iα being limited to the upper bound C . 

 
Figure 9: Classification of a non-linearly separable dataset. 

To solve non-linear classification problems, linear support vector machines are applied to high di-
mensional spaces (Figure 10). Transforming data into a high dimensional space can transform 
complex problems (with complex decision surfaces) into simpler problems that can be solved with 
linear classifiers (16). This means transforming from ji xx ,  to )(),( ji xx ΦΦ  (Kernel trick 
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The common Kernel functions are polynomial with degree d , the Radial Base Function with width 
σ  and the Sigmoid with parameter   k
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Figure 10: Transforming datasets from the input space to the high dimensional space. 
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As in the case of ANNs, a NeuroSolutions programme was used in this work (16). In this pro-
gramme, transforming the data from input space to high dimensional space is done using a Radial 
Basis Function (RBF) network that places a Gaussian distribution at each data sample (16). Thus, 
the feature space becomes as large as the number of samples (16). The SVM was divided into two 
parts to implement the RBF dimensionality expansion and a large margin classifier. As in the case 
of MLP, SVMs use the concept of backpropagation training to train the linear combination of Gaus-
sians. SVMs are motivated by the concept of training and use only those inputs that are near the 
decision surface since they provide most information about the classification (16). More details on 
the components of the constructed SVM are available in (16). 

The training, testing, and production processes of SVM were carried out based on the same data-
set that was used in MLP to ensure an exact comparison in the quality of the results between the 
MLP and SVM. As in MLP, the number of nodes of an SVM network is the number of exemplars 
(rows) of the training set equal to 111 and 1000 Epochs. The number of nodes is configured auto-
matically by the NeuralBuilder (16). 

Classification of noisy oil spectra 
Meeting the practical situation of noisy oil fluorescence data requires investigating the noise’s ef-
fect on the oil type classification. This was achieved by two approaches. The first is to introduce 
noisy oil fluorescence data to be classified by the MLP and SVM that were trained on the ideal oil 
spectra (non-noisy spectra) measured in the laboratory in order to see the trained MLP’s and 
SVM’s ability to classify them in the presence of noise. The second approach is to expand the 
dataset to include both non-noisy and noisy spectral data. The results achieved in both approaches 
are compared. 

Use of the noise-free dataset 
The same three new non-noisy input oil spectra that were classified with the trained MLP and SVM 
were presented once again to the same trained MLP and SVM, but as noisy spectra. For this, 5% 
and 10% random Gaussian noises were added to these new input spectra and then presented to 
the trained MLP and SVM. 

Training with noisy spectra 
To ensure the best performance of the trained MLP and SVM the original dataset was expanded to 
include, in addition to the ideal spectra (without noise), the same spectra after the 10% random 
Gaussian noise had been added to them. I.e., the original dataset was doubled to include also 
noisy spectra with a random Gaussian noise of 10%. Then, the same three new noisy spectra were 
presented to the trained MLP and SVM. 

RESULTS AND DISCUSSION 
Oil classification and identification using the CRM 
Figure 11 shows the results of the oil classification using the CRM.  

   
(a) (b) 

Figure 11: Oil classification using the CRM. 
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Most of the oils within the crude oil class have similar fluorescence spectral signatures. Therefore, the 
oils within this class form their own group when the CRM is applied. The same role is applied to heavy 
oil. Oils within the sludge oil classes are randomly distributed since the oils within this class have differ-
ent oil fluorescence spectra. It is also shown that the spectra of some oils from the heavy and crude 
oils resemble the sludge oil spectra, which makes them mixed within the two classification groups. So, 
if the detected oil fluorescence appears in a yellow area crude oil will be mostly expected, and if it ap-
pears in a red area heavy oil will be expected, otherwise, it will be expected to be sludge oil. This clas-
sification is based on the assumption that there are only three oil classes. Other types of oil classes 
such as bilge oil and vegetable oil could be considered to increase the ability of this method to classify 
oil fluorescence spectra. 

Oil classification and identification using MLP 
Table 1 shows the testing results of the trained network. The output of the tested MLP shows that 
the closest value to 1 is for sludge oil as the first input, while heavy oil is the second and crude oil 
is the third input. This result meets the desired output performance of the trained MLP. Table 2 
shows the identification of unknown oil spectra by the trained network. There were three new fluo-
rescence spectral signatures of oil, which the trained MLP was unaware of. The result shows that 
the first oil is sludge, the second is crude, and the third is heavy oil. These identifications were 
made depending on which class had the closest value to 1. On the basis of the database the 
trained MLP classified the three new fluorescence spectral signatures of oil correctly.  

Tables 3 and 4 show the results of the retrained network. From the results one can see that the 
classification is still correct, but the accuracy of the classification is not the same although both 
networks were trained on the basis of the same dataset. This means that one should train the net-
work many times to evaluate the best performance of the trained network. 

Table 1: Testing results of the trained MLP.  

Ideal Output Calculated Output 
Sludge Heavy Crude Sludge Heavy Crude 
1.000 0.000 0.000 0.863 0.279 0.001 
0.000 1.000 0.000 0.022 0.844 0.228 
0.000 0.000 1.000 0.052 -0.017 0.949 

Table 2: The identification of unknown oil spectra by the trained MLP. The used spectra were from 
sludge, crude and heavy oil. 

Calculated Output 
Sludge Heavy Crude 
0.869 0.226 -0.025 
0.083 -0.006 0.946 
0.036 0.7019 0.329 

The following results are those of the re-trained MLP. 

Table 3: Testing results of the re-trained MLP. 

Ideal Output Calculated Output 
Sludge Heavy Crude Sludge Heavy Crude 
1.000 0.000 0.000 0.782 0.205 -0.011 
0.000 1.000 0.000 -0.012 0.751 0.232 
0.000 0.000 1.000 -0.002 -0.045 0.992 
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Table 4: Identification of unknown oil spectra by the re-trained MLP. Same spectra as in Table 2. 

Calculated Output 
Sludge Heavy Crude 
0.858 0.270 -0.030 
0.020 -0.043 0.978 
0.012 0.634 0.338 

Oil classification and identification using a SVM 
Figure 12a shows the active cost of the SVM. One can see that the cost curve of the SVM ap-
proaches to zero, which means that SVM has understood the problem. Table 5 shows the testing 
results of the trained SVM. The output of the tested SVM shows the closest value to 1 for sludge oil 
at the first input, for heavy oil at the second and for crude oil at the third input. This result indicates 
that the trained SVM meets the desired requirements. Table 6 shows the results of the identifica-
tion by SVMs. These results were achieved from the first time training. The re-training process has 
no effect on the result. This means the performance of the SVM is achieved from the first time 
training process which saves the user’s time. The identification of an unknown oil fluorescence 
spectrum is 100% correct. These identifications were made based on which class had the closest 
value to 1, as it was done with the MLP. When comparing these methods one can see that both 
MLP and SVMs correctly identified the unknown spectra.  

 (a)   (b) 

Figure 12: (a) The active cost curve approaches zero which means that classification of the dataset 
was carried out correctly. (b) the performance, showing the mean squared error (MSE), the nor-
malized mean squared error (NMSE), percent error (% error), Akaike's information criterion (AIC), 
and Rissanen's minimum description length (MDL) criterion. 

Table 5: Testing results of SVM. 

Ideal Output Calculated Output 
Sludge Heavy Crude Sludge Heavy Crude 
1.000 0.000 0.000 0.902 0.065 0.099 
0.000 1.000 0.000 0.124 0.817 0.163 
0.000 0.000 1.000 0.046 0.060 0.946 

Table 6: Identification of unknown oil spectra by a SVM. Same spectra as in Table 2. 

Calculated Output 
Sludge Heavy Crude 
0.844 0.103 0.133 
0.052 0.071 0.937 
0.047 1.097 -0.054 
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CLASSIFICATION OF NOISY OIL SPECTRA 
Use of the noise-free dataset 
Tables 7-10 show the identification of new noisy oil spectra that were presented to the trained MLP 
and SVM. These results show that the trained MLP and SVM identified the noisy inputs, although 
the MLP and SVM were trained with the noise-free dataset. Again the identification is based on the 
output whose value is closest to 1. Thus, the first input sample would be identified as sludge oil, 
the second one as crude oil, and the third one as heavy oil. This identification is correct according 
to the used types of oils. 

Table 7: Identification of unknown noisy spectra by the trained MLP. Same spectra as in Table 2 
after adding 5% random Gaussian noise. 

Calculated Output 
Sludge Heavy Crude 
0.933 0.182 0.120 
0.028 -0.047 0.997 
-0.041 0.794 0.194 

Table 8: Identification of unknown noisy spectra by the trained MLP. Same spectra as in Table 2 
after adding 10% random Gaussian noise. 

Calculated Output 
Sludge Heavy Crude 
0.891 0.266 0.069 
0.044 -0.047 0.995 
-0.036 0.604 0.337 

Table 9: Identification of unknown noisy spectra by the trained SVM. Same spectra as in Table 2 
after adding 5% random Gaussian noise. 

Calculated Output 
Sludge Heavy Crude 
0.681 0.186 0.266 
0.287 0.276 0.627 
0.282 0.508 0.438 

Table 10: Identification of unknown noisy spectra by the trained SVM. Same spectra as in Table 2 
after adding 10% random Gaussian noise. 

Calculated Output 
Sludge Heavy Crude 
0.651 0.202 0.291 
0.187 0.184 0.760 
0.239 0.665 0.302 

Training with noisy spectra 
Tables 11-14 show the identification of the new noisy oil spectra presented to the MLP and SVM 
that were trained with the enlarged dataset. These results show that the trained MLP and SVM 
could identify the noisy inputs correctly. As seen in the comparison between the results achieved 
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from the MLP and SVM that had been trained based only on the non-noisy spectra and the results 
achieved from the MLP and SVM that had been trained based on the dataset that contained non-
noisy and noisy spectra, there is not much difference in the  quality of the results.  

Table 11: Identification of unknown noisy spectra by the trained MLP. Same spectra as in Table 2 
after adding 5% random Gaussian noise. 

Calculated Output 
Sludge Heavy Crude 
0.954 0.007 -0.054 
-0.012 -0.038 0.877 
-0.027 0.845 0.470 

Table 12: Identification of unknown noisy spectra by the MLP. Same spectra as in Table 2 after 
adding 10% random Gaussian noise. 

Calculated Output 
Sludge Heavy Crude 
0.953 0.001 -0.054 
0.000 -0.043 0.894 
-0.028 0.724 0.602 

Table 13: Identification of unknown noisy spectra by the trained SVM. Same spectra as in Table 2 
after adding 5% random Gaussian noise. 

Calculated Output 
 Sludge Heavy Crude 
0.874 0.127 0.092 
0.160 0.209 0.774 
0.389 0.479 0.419 

Table 14: Identification of unknown noisy spectra  by the trained SVM. Same spectra as in Table 2 
after adding 10% random Gaussian noise. 

Calculated Output 
Sludge Heavy Crude 
0.877 0.125 0.090 
0.057 0.089 0.924 
0.324 0.477 0.446 

CONCLUSIONS 
The CRM provides a simple but still meaningful classification of the available spectra according to 
the rough oil type. From the results obtained with all investigated methods one can conclude that 
the SVMs are the most convenient method for oil spectral signatures classification and identifica-
tion due to the fact that they are faster and more stable than the ANNs. Re-trained ANNs lead to 
changes of the accuracy although the general result is still correct. Meanwhile, a re-training proc-
ess in SVMs does not lead to any change in the final result of oil classification and identification. 
This result gives the SVMs the advantage of being more stable than ANNs. It also saves the user 
time because by using the SVMs one can get the best result from the first time training. Meanwhile, 
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when using ANNs, it is necessary to train the network many times in order to estimate the best per-
formance. Meeting the practical situation of noisy oil fluorescence, both ANNs and SVMs proved to 
be efficient to classify noisy oil fluorescence of 5% and 10% Gaussian noise. To ensure the best 
performance of the trained MLP and SVM the training dataset should include noise-free and noisy 
fluorescence spectra. 

The database and the input fluorescence signature of the oils play a very important role in the effi-
ciency of the classification method. If the input fluorescence of the oil does not fit into one of the 
classes already included in the database, or if it is a new and previously not considered signature, 
then the classification method must always be redone. Both ANNs and SVMs have real time capa-
bilities, however, they can be trained offline and then applied in real-time applications. As a result, 
we conclude that the SVM classification method is the most convenient method to classify oil spec-
tra. Since the dataset plays an important role in the accuracy of the classification method, it would 
be beneficial to widen the dataset to include other oils such as bilge oils, vegetable oils and other 
oil-like chemicals which are transported at sea. This work is an offline task, therefore, it can be in-
tegrated with the real sensor.  

There are many programmes of ANNs and SVMs available, therefore, it is not imperative to restrict 
the programme used in this work. One might use another version and compare the quality of the 
result. 
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