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ABSTRACT 

This paper presents a detailed application of two recently developed methodologies for non-linear 
unmixing, applied to the Inference Imaging Spectrometer (IIM) sensor on board of the Chinese 
Chang'E-1 mission. In the framework of the Moon Mapping project, jointly sponsored by the Italian 
Space Agency and the Center of Space Exploration (COSE) of the P.R. China, a p-linear mixing 
(p-LMM) model has been applied to data by the first Chinese exploration mission to the Moon. The 
rationale for using non-linear unmixing models is the intimate mixture characterizing the materials 
on the Moon surface, and the multi-path and multi-reflection phenomena occurring on its rugged 
surface, especially at the rather coarse spatial resolution (200 m) of the IIM sensor. Two test areas 
have been considered, namely the landing site of the Apollo 17 mission, where additional 
information from US probes is available, and a second - much wider - area, selected by COSE as 
one of the possible landing sites for future Moon operations. Mineral map extractions using p-LMM 
have been considered and compared with those obtained by means of the modified partial least 
squares regression (PLSR) methodology. Results show that the proposed approach is able to 
obtain results consistent with those obtained by the previous works without requesting a priori 
knowledge of the chemical composition of the Moon surface, just the spectra of the materials to be 
considered.  
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INTRODUCTION 

Earth and planetary surface observations have taken strong advantage of recent developments in 
remote sensing technology [1]. In fact, the characterization of the structure of the considered 
targets benefits from the complex spectral investigations allowed by high spectral resolution in the 
records acquired by probes and sensors. This feature is especially interesting for planetary 
research and exploration [2] [3], since the efforts to recover ground data and samples from 
extraterrestrial bodies are extremely large. Therefore, reliable investigation on surface composition 
by means of records remotely acquired by spectrometers can improve the characterization of the 
surface without requiring to actually reach that surface [4] [3].  

Among extraterrestrial bodies, the Moon is a very interesting example for many reasons. Its 
interest is also high from a geophysical point of view. Indeed, Moon is a differentiated planet such 
as Earth [5] [6] [7]. Its crust results from the deposit and evolution of magmatic lithologies which 
include mafic minerals (i.e., minerals enriched in iron and magnesium, such as olivine, 
orthopyroxene and clinopyroxene). The geological mechanisms that formed the materials at the 
surface and near-surface through various mantle processes and crystallization conditions can be 
reconstructed from the knowledge of the specific mineral assemblages and their major element 
chemistry. Moreover, its planetary thermal and chemical evolution is a powerful evidence for 
unraveling the Moon geologic history, and it, too, can be described by exploring the composition 
and mineralogy of the surface [8].  
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Typically, the Moon surface has been characterized by investigation based on modal and chemical 
research of surface rocks. Accordingly, a reliable estimate of the abundances of each mineral in an 
area can be retrieved by using adequate deconvolution techniques, such as those based on 
modified Gaussian model (MGM) and partial least squares regression (PLSR) [7] [9] [10]. The 
outcomes of these techniques might reach high accuracy. However, they usually have a large 
computational cost, especially when large-scale datasets are considered.  

As an alternative, spectral unmixing methods can provide a remarkable enhancement with respect 
to computational costs  [1] [11] [12] [13]. Spectral unmixing separates the target pixel spectrum into 
a set of constituent spectral signatures (endmembers) combined by means of a set of fractional 
abundances. In particular, our bet is that a more accurate characterization of the surface may be 
achieved by means of higher order nonlinear spectral unmixing. In fact, it has been demonstrated 
[11] [12] [13] [1] [14] that these algorithms are able to effectively describe spectrally and 
geometrically complex scenarios.  

In this paper, we aim at using higher order nonlinear HSU methods to achieve accurate 
characterization of the mineralogical composition of the Moon surface. To this aim, we exploit 
higher order mixture models to efficiently obtain a reliable distribution of the minerals’ abundances. 
We use the retrieved coefficients driving the spectral mixtures to estimate the minerals in the areas 
corresponding to each of the pixels of four test areas. Experimental results on these areas are 
finally validated  by comparison with with the outcomes of the above mentioned and well 
established PLSR method, so that it is possible to appreciate that non-linear spectral unmixinh is 
actually able to provide significant information about Moon surface composition.  

METHODS 

It has been proved that unmixing techniques are able to provide accurate description of the 
materials in the local instantaneous field-of-view by characterizing the interactions among the basic 
materials in the area [11] [14] [13] [12]. Moreover, since the inversion process carried out over the 
mixture models depends only on the endmember spectra, spectral unmixing methods are not 
sensitive on statistical distribution parameters. As absorption characteristics vary nonlinearly 
according to the abundance distribution, nonlinear spectral unmixing methods are appropriate for 
understanding and quantifying the physical-chemical composition of the materials on the Moon 
surface.  

Higher order nonlinear mixture models can indeed help in describing extraterrestrial surfaces, 
strongly depending on intimate mixture features, such as grain size and illumination angles [1] [5] 
[3] [7] [12]. 

They can be generally written according to the following expression: 
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identifies the p-linear mixture model (pLMM) [11].  

The goal of nonlinear spectral unmixing is to evaluate each   term, in order to understand the 

nature of the endmember combination that delivers the given target observation spectral signature. 
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We proved in [11] that the coefficients driving the nonlinear combination in (1) can be obtained by 
means of a linear system involving the original hyperspectral data and the endmembers’ spectra 
delivered by an endmember extraction algorithm (EEA, and exploiting polytope decomposition 
(POD) can be used to retrieve the  coefficients.  

Once the linear and nonlinear coefficients are retrieved, a proper combination of them can provide 
a more accurate estimation of the endmember abundances. In order to compute them, we 

proposed [11] a global metric based on the polytope representation. Indeed, given l  as extracted 

according to the overdetermined linear programming optimization, the spectral representation of 

the reconstructed pixel lŷ  can be represented as: 
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where 
nrl  is the overall contribution of the r-th endmember to the reconstruction of the l-th pixel 

over the n-th band. Hence, it is possible to think to 
nrl  as the compression/expansion factor of the 

r-th endmember over the n-th direction in the N-dimensional space. As the relevance of the r-th 
endmember in contributing to the reconstruction of the l-th pixel increases, the amplitude of 

 
Nnrlrl n ,...,1

   gets larger as well.  

In order to quantify the contribution of each endmember to the reconstruction of the l-th pixel, let us 

consider the polytope that is induced by the vertices identified by 
rl

 . Given our assumptions such 

a polytope is a simplex [3]. Therefore, we can define its volume as 
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reliable characterization of r-th endmember aggregate abundance, as it involves all the spectral 
interactions provided by the aforesaid endmember.  

Thus, the r-th endmember abundance rlâ  can be defined as:  
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The abundance estimates rlâ  fulfill the sum-to-one and the non-negativity constraints [1]. 

Furthermore, it is possible to consider rlâ  as an aggregate metric to estimate the abundance of the 

r-th endmember in a pixel, where the contributions of each order is weighted by the endmember 
itself. This results in a more stable and reliable metric in order to get an evaluation of the presence 
of each endmember in the scene [11] [14].  

As previously mentioned, acquiring univocal and well defined spectral signatures of minerals over 
extraterrestrial bodies’ surface can be cumbersome. Indeed, geomorphological and geophysical 
properties as well as illumination conditions can strongly affect the signals that are remotely 
sensed by spectrometers. Therefore, in order to give a thorough overview of the actual occurrence 
of each element in the considered scene, several spectra identifying minerals with different 
geophysical features are used as endmembers’ library. Indeed, the overall endmember library 
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which can be associated with the s-th specific mineral compound. Thus, let sl̂  be the estimate of 
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the actual abundance of the s-th mineral over the l-th pixel. Then, it is possible to retrieve a 

thorough estimate of the each sl̂  as follows: 
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Experimental results in the following Section are then evaluated according to these metrics.  

RESULTS 

The IIM is a sagnac-based spatially modulated Fourier transform imaging spectrometer on-board 
the first lunar satellite of China, Chang’E-1 [10] [9] [15]. It mapped the lunar surface with a swath of 
25.6 km and spatial resolution of 200 m from a polar orbit of 200 km altitude. Within the wavelength 
range of IIM, i.e., 480.9–946.8 nm, it has 32 continuous channels with a theoretical spectral 
resolution of 330 cm-1 (variable from the highest 7.5 nm at 480 nm to the lowest 29 nm at 946 nm 
in wavelength units) according to the Sparrow’s criterion. The spectral resolution and wavelength 
position in the laboratory test with the gas laser and semiconductor laser shows that the actual 
resolution is about 355 cm-1  and maximal shift of 2.48 nm at 831.2 nm for the wavelength position  
The signal–to-noise (SNR) of the in-flight data, was evaluated with a simple mean/standard 
deviation method. Then, only 26 bands are kept to proceed with investigation [9]. 

We first tested the nonlinear spectral unmixing approach over the area where the Apollo 17 
mission landed [4] [3]. The considered Chang’E-1 image on that region consists of 391 x 446 pixels 
and 26 bands. We used this first analysis to investigate the performance of architectures based on 
different spectral mixture models. Specifically, 72 spectral signatures of mafic elements collected 
from laboratory and experimental observations have been used as endmembers to feed the 
nonlinear spectral unmixing frameworks. Moreover, the endmembers have been pooled into nine 
groups of major mineral compounds, i.e., S = 9 in (4). These materials result from pure mafic 
elements [namely olivine (OL), plagioclase (PL), orthopyroxene (OPX) and clinopyroxene (CPX)] 
and mixtures of the aforesaid minerals [namely OL-OPX, OL-OPX-PL, OPX-CPX, OPX-CPX-OL, 
CPX-OL]. 

Indeed, we exploited the knowledge that has been acquired on the landing site in order to verify 
the accuracy of the estimated minerals’ abundance distributions. Specifically, we focused on the 
orthopyroxene compound, which presence has been found to be especially relevant in the green 
box in Figure 1 by surface exploration. Figure 1(a) shows the mineral absorption that has been 
retrieved by analyzing the Voyager spectrometer records: it is thus possible to appreciate the 
distribution of this mafic mineral in blue and cyan.  

Experimental results in Figure 2 report that the unmixing method obtained by 5-linear mixture 
model (5LMM) provides higher accuracy in estimating the abundance of orthopyroxene than linear 
or bilinear models. This result is somehow expected, since it is compliant with the capabilities of 
higher order nonlinear models to track sophisticated mixtures in spectrally and geometrically 
complex scenes. Furthermore, it is possible to appreciate that the 5LMM model is able to strongly 
determine and separate the abundance estimates, so that the blurriness produced by linear and 
low order nonlinear mixture models is dramatically reduced.  

In the second performed test, we focused on a much wider region of Moon surface (Figure 3). The 
selected area is located around Laplace A and Helicon craters in sinus Iridum and Mare Imbrium. 
This portion of Moon surface is especially interesting because it identifies a general flat terrain, 
which can be eventually used as landing site for future missions. The Chang’E-1 dataset that has 
been taken into account consists of 2647 x 445 pixels 

Several higher order nonlinear spectral unmixing models were considered. Moreover, we fed the 
spectral unmixing schemes with the spectral signatures identifying six major elements on Moon 
surface, i.e., FeO, TiO2, MgO, Al2O3, CaO and SiO2. In order to evaluate the actual ability of this 
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approach to detect and quantify the abundance distribution of these elements, we compared the 
retrieved abundance maps with those by the PLSR framework in [9].  

 

 

Figure 1 (a): mineral absorption map of the area of Apollo17 landing site. The green box highlights 
the area with the strong presence of orthopyroxene (light blue and cyan). (b): Chang’E-1 data over 
the same area (band 4). 

 

Figure 2: Orthopyroxene abundance maps for the area in fig.1 retrieved by means of linear , 
bilinear and 5-linear spectral unmixing models ((a), (b) and (c), respectively). 
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Figure 3: the region of the Moon surface considered as second test. 

 

Figure 4: Mineral abundance maps by spectral unmixing based on a 8-linear mixture model (a) in 
the area of fig.3, to be compared with those obtained by partial least squares regression in (b). 

Figure 4 shows the results obtained using a 8-linear mixture model (8LMM). The approach based 
on non-linear spectral unmixing is able to accurately track the minerals’ distribution, since the 
produced maps do not differ significantly from the PLSR outcomes. This aspect is further 
emphasized by Figure 5, where the error distributions for each mineral on the considered image is 
displayed. Moreover, the average error histogram in Figure 6 delivers even more insight on the 
actual performance of the proposed approach. Specifically, it is apparent that the error obtained for 
most of the considered endmembers is less than 10%, which represents a robust result from a 
statistical point of view. However, the average abundance error for SiO2 is greater than 30%. This 
effect can be explained taking into account the chemical properties of SiO2 itself. Specifically, SiO2 
shows a non-orthorombic crystalline structure, which implies a very fine grain size of the SiO2 
minerals on the surface. These properties cause strong nonlinear interaction on the reflectance 
contribution for the SiO2 minerals at a macroscopic scale. Thus, PLSR estimates might not be very 
accurate, since that framework definitely relies on the linearity of the minerals’ reflectance [9].  
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Figure 5: error distribution of the results in Figure 4 for each mineral. 

 

 

Figure 6: Average abundance error for each mineral in Figure 5. 
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CONCLUSIONS 

In this paper, a framework for analyzing mineralogical composition of extraterrestrial planets has 
been provided. The proposed scheme, based on nonlinear spectral unmixing, is able to provide 
accurate assessment of mineral abundance distributions on the Moon surface.  Furthermore, it 
provides detailed information on the surface geophysical composition. Experimental results show 
that the proposed approach is actually able to extract mafic mineral maps highly correlated to 
reference mineral distributions. Future works will focus on exploiting the results obtained from the 
proposed method to achieve higher-resolution high-accuracy quantification of the mafic. 
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