MISR Arctic and Antarctic Sea Ice Albedo 2000-2022: Product Creation, Trend Analysis and Validation

Laura Aguilar¹, Jan-Peter Muller², Michel Tsamados³, Thomas Johnson³, Julienne Stroeve³, Alexandra Weiss⁴, Said Kharbouche²

- 1. Geography Department, University College London, Gower Street, London, WC1E 6BT, UK
- 2. Imaging Group, Mullard Space Science Laboratory (MSSL), Department of Space I\& Climate Physics,
 - University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK
- 3. Centre for Polar Observation and Modelling, University College London, Gower Street, London, WC1E 6BT, UK
- 4. British Antarctic Survey, Cambridge, UK

Relevance of MISR Sea Ice Albedo science

- Ice Cap is melting. But we don' know the effect on sea ice surface albedo.
- This work is a first attempt at creating a long time series to study these effects
- For MISR, we can take instantaneous BRFs and compare these against near-simultaneous airborne spectral BRDF sampling system by CAR
- Selected NASA-CAR from ARCTAS campaign (7 April 2008), previously studied by Lyapustin et al. (2011)
- MISR comparisons with CAR indicate that without accounting for any aerosols, we have very good agreement between MISR BRF and corresponding CAR BRF data
- Sea ice is anisotropic and moves fast.
- MISR is the <u>only EO sensor flying in space</u> which has the potential to map <u>instantaneous</u> seaice albedo, a key Essential Climate Variable

Average Monthly Arctic Sea Ice Extent September 1979 to 2010

8.5

8.0

7.5

7.0

6.5

6.0

1978 1982 1986 1990 1994 1998 2002 2006 2010

Sea Ice Albedo production Flowchart

Merging of 3 products:

- MISR L2AS: red, green, blue, NIR spectral bandwiths (2% absolute radiometric uncertainty) at 1.1km resolution.
- MOD29: Surface Temperature and Ice Extent products containing MOD35 Cloud Mask. 1km resolution.
- MOD03: geolocation product. 1km resolution.

Green: process **Red:** final output products

Final output products:

BHR Orbital swaths.

06/02/2023

- BHR daily sliding windows for the 4 spectral bands and statistics.
- Total of 12 daily Sea Ice BHR products, with different averaging time window (31days, 15days, 7days and 1 day) and spatial resolutions (1km, 5km, 25km).

31 days average BHR_{Red} pre-melt season for the Arctic (2016) and Antarctic (2018-2019), at 1km resolution.

Arctic 31 days average BHR_{Shortwave} multi-year results - 1km resolution.

Antarctic 31 days average BHR_{Shortwave} multi-year result for the 27th Oct (2000-2018), pre-melt onset, at 1km resolution.

Average $BHR_{Shortwave}$ trendlines for the Arctic (2000-2021) and Antarctic (2000-2022).

Albedo Trends at 25km resolution for the Arctic (2000-2021) and Antarctic (2000-2022) - 10 days intervals

Antarctic (2000-2022)

Annual Change of $BHR_{Shortwave}$ for the Arctic and Antarctic before the onset of melt period and for the entire period.

ANTARCTIC Sea ice Albedo validation using Aircraft measurement intercomparison - MASIN (2007)

Courtesy of **BAS**: Weiss et al., (2012), The Cryosphere, 6, 471-479, doi:10.5194/tc-6-479-2012

Aguilar, **Tsamados**, Johnson, **Weiss**, Muller et al. (in preparation)

ARCTIC Sea ice Albedo validation using Aircraft measurement intercomparison - ARISE ARISE v MISR MISR v ARISE (short-wave Albedo; n=50) 1.0 24 23 22 21 20 19 18 17 MISR PPMCC = 0.777ARISE 200 0.8 150 MISR Albedo 9.0 **ARISE Flight Paths** 2014/09/01 - 2014/10/04 1.0 0.2 0.6 0.8 Albedo - 0.8 0.0 -0.6 0.8 0.0 0.2 0.4 1.0 ARISE Albedo Bias Distribution Plot 0.030 Mean = -11.74%0.025 2014 Median = -7.58%Std = 23.25% $R^2 = 0.777$ 0.020 0.015 - 0.2 0.010 0.005 Snow Workshop 2023 -06/02/2023 11 0.000 7@ucl.ac.uk 100 -100Bias (%)

Primary Conclusions

- ✓ 12 New multi-source satellite derived broadband BHR sea ice albedo products for each pole.
- ✓ Arctic (2000-2021) BHR shortwave annual change of -0.61+- 0.29%.
- ✓ Antarctic (2000-2022) BHR shortwave of annual change of -0.21+-0.05%.
- ✓ Arctic validation so far shows $R^2=0.777$
- ✓ Antarctic validation so far shows R²=0.937

Secondary Conclusions

- ✓ Multiyear masking may be too restrictive for Antarctic compared to Arctic.
- ✓ Annual change % for subregions in Antarctic should lead to more conclusive results.
- ✓ High confidence in annual change calculation methodology -> in line with literature.
- ✓ Shortwave to Broadband conversion matched well Barrow station. But we know its not great at NIR.

Future work

- Median Filtering to surpass the multiyear pixel restriction over the Antarctic and subsequent underestimation of sea ice albedo.
- Validation to be continued with Arctic MOSAIC data.
- Mixed-Pixel problem: Use MODIS Lead and MODIS meltpond products to analyse the BRDF response of each surface type and fine tune the conversion factors (weighted BRDF)
- External information to interpret the Albedo, where it is valid or not.
- Correlation with sea ice Extent products/results from literature.
- Quantisation of MODIS cloud mask product error propagation.
- Comparison with CLARA-SAL2 25km resolution product.

The data in netCDF4 (CF) format can be downloaded from: http://www.qa4ecv-land.eu/get-polar-sea-ice.php.

Previous Arctic products can also be found at:

<u>Dataset Record: QA4ECV Polar sea-ice spectral albedo (2000-2016)</u>
(ceda.ac.uk)