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Motivation of the work

. Accurate and distributed snow water equivalent (SWE) measurements are
missing
. Snow hydrological models require accurate precipitation measurements

. Recent remote sensing products are very promising for SWE monitoring

* A novel approach to retrieve distributed SWE at high spatial and temporal
resolution

e  Complete time-series during accumulation and melting phase

. Multi-source (optical, SAR) and multi-temporal approach

. Parsimonious use of in-situ data
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State identification

Snow Melting
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Rules:

. Accumulation: if the snow precipitation measurements (SD/SWE) show an increment greater than a defined threshold.
The state is the same for all the snow-covered area of the catchment;

. Ablation: if i) the date does not experience an accumulation, ii) ty5 has been reached (looking at the multitemporal SAR

backscattering), and iii) the degree-day is greater than O.
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Characterization of snow season from SCA
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Inter-annual spatial snowmelt and accumulation follow
specific patterns influenced by the catchment topography

and meteorology

Historical statistical analyses of long time-series

Reconstruct the SCA from other sources (downscaling
from low-resolution images when missing acquisition or
gap-filling exploiting known pixels when cloud

obstruction)

021). A Novel Approach Based on a Hierarchical Multiresolution Analysis of Optical Time Series to
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Characterization of snow season from SCA

The daily SCA maps are affected by errors that may arise
from the classification or the reconstruction
We observed two main errors:

* Underestimation of snow under canopy by HR

sensors

* Snow patches are not visible by LR sensors
We set up a SCA regularization that must be coherent with
the state
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Algorithm 1 Regularization of the snow cover maps according with the catchment state.

if Accumulation then

Transition snow-snow freeisnotallowed! B O O OO OO0 @ &
lsa 1t

The pixel is snow from 154 <t — 1. Between tg4 and ¢ — 1 all states are possible.
We indicate with #j,548 aday tsa < tiusan <t — 1 representing the date of the last ablation after £5 4

if t —tg 4 < 10 days then
| Recent t5: check £ L 5 days and compute the most frequent label

else
| Old g4z check last up to 5 HR from £ 4 to f and compute the most frequent label

end

if most frequent label is snow then

l t is a FN (c.g., missed snow under canopy): set £ as snow =) l(:] oogoo [':1] [?
A
else
t —1is a FP (e.g., cloud detected as snow): set [, ;1 — 1] as snow free —!—ED—%—%’
end
else

Transition snow free-snow is not allowed! O l. EEEN l-1 [%] >
oo .

The pixel is snow free from gy, < — 1. Between fg; and ¢ — 1 all states are possible.
We indicate with t,.: 4 aday tsp < flaseac <t — 1 representing the date of the last accumulation after tsp
if t —tg54 < 10 days then
| Recent 5.4: check £ £ 5 days and compute the most frequent label
else
| Old tg4: check last up to 5 HR from £ g4 to £ and compute the most frequent label
end
if most frequent label is snow then

»

Lo t

I t —1is a FN (c.g.. missed snow patches): set [tiaseac;t — 1] as snow OmmEmE00 = [%]
else

t is a FP (e.g., cloud detected as snow): set £ as snow free O E EEE D !1 -‘
= =

end

end
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Proposed SWE reconstruction

Computation of the total mass

Potential melting estimation

M;_; ¢ [mm] = a[mm°C~*d'|DD,_; +[°Cd]

A DDt—l,t = Zg—l Th lf Th > T

ACC ACC ACC
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Results

South Fork of the San Joaquin River, Sierra Nevada, California (2"¢ May 2019)
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Results

South Fork of the San Joaquin River, Sierra Nevada, California (4t July 2019)
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Results

South Fork of the San Joaquin River, Sierra Nevada, California
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Results

South Fork of the San Joaquin River, Sierra Nevada, California
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Results

South Fork of the San Joaquin River, Sierra Nevada, California
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Conclusions

* Accurate daily and high spatial resolution SWE reanalysis product
* Innovative use of S-1 data to spatialize melting

* Innovative SCA correction

 Able to well represent spatial patterns

 Able to well represent inter-annual variability

 Agreement in terms of overall SWE balance

 Todo: Fully independent from in-situ data (e.g., when determining the accumulation, potential melting)
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Thank you for your attention
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Towards a (near) real-time reconstruction
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100
:'l.
80 A
1000
—— 2012/13
—— 2013/14
60 - 2012/13 8001 —— 2014/15 x
—— 2015/16
- 2013/14 501718
« 2014/15 E 6001 —— 2018/19
£ —— 2019/20
40 - . 2015/16 w 2020/21
. 2017/18 o400 x_gso "
50 - « 2018/19 200
« 2019/20
« 2020/21 , , , , , . . . . .
0 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
0 200 400 600 800

SWE [mm]

Negative correlation (p=-0.75) between the coefficient of the intercept a and maximum of SWE
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