ASSESSING THE POTENTIAL OF INTERFEROMETRIC AND POLARIMETRIC SAR FOR THE RETRIEVAL OF SNOW WATER EQUIVALENT

Kristina Belinska^{1,2}, Georg Fischer¹, Julia Boike³, <u>Irena Hajnsek^{1,2}</u> ¹Microwaves and Radar Institute, German Aerospace Center ²Institute of Environmental Engineering, ETH Zurich ³Alfred-Wegener-Institute, AWI

EARSeL Workshop, 06.02.2023

Motivation

Snow Water Equivalent

Amount of liquid water contained within a snow pack
 → depth of water, if whole snow pack melted instantaneously

$$SWE = \frac{1}{\rho_w} \int_0^{Z_s} \rho_s(z) \, dz \approx Z_s \rho_s / \rho_w$$

Important Parameter for

Hydrological and climate models

Water resource planning

Flood predictions

https://www.sieker.de/en/fachinformationen/flood/hydrologic al-modelling.html

https://www.drax.com/about-us/our-sites-andbusinesses/cruachan-power-station/

https://www.wkbw.com/news/local-news/rain-snow-melt-floods-basements-of-orchard-park-homeowners

Motivation

Advantage of SAR

- Monitor snow covered areas with high spatial resolution
- Independent from weather and illumination conditions
- Microwaves penetrate into dry snow → sensitive to structural parameters

https://tandemx-science.dlr.de/cgi-bin/wcm.pl?page=TDM-Mission

Differential SAR Interferometry Model for SWE Estimation

- Repeat pass SAR acquisitions with zero baseline
- Different dielectric properties in snow compared to air
 - \rightarrow Refraction of radar waves in the snow pack
- \rightarrow Different optical path length for snow compared to no snow conditions
- Only dry snow

DInSAR Model for SWE Estimation

• Path delay ΔR can be translated into an interferometric phase difference

$\Delta \Phi_s = 2 \; \frac{2\pi}{\lambda} \; \Delta R$

$$\Delta \Phi_s = -2 k_i \Delta Z_s (\cos \Theta - \sqrt{\epsilon} - \sin^2 \Theta)$$

=: $\xi(\Theta, \rho_s)$

$$\Delta \Phi_s = 2 k_i \frac{\alpha}{2} (1.59 + \Theta^{\frac{5}{2}}) * \Delta SWE$$

DInSAR Model for SWE Estimation

- ΔΦ_s between [-π, π] → outside this interval phase wrapping errors
- SWE changes exceeding the threshold, will be underestimated (red dotted line)

Copolar Phase Difference (CPD): Snow Depth Estimation

 Additional information about snow accumulation contained in co-polar-phase difference

$$\Phi_c = \Phi_{VV} - \Phi_{HH}$$

- Different polarizations show different propagation speeds in anisotropic snow
- Fresh snow
 - \rightarrow more horizontally aligned ice grains
 - → slower propagation speed for H-polarized microwaves
 - \rightarrow increasing CPD values
- Decreasing CPD values due to recrystallisation under temperature gradients

 \rightarrow help to correct phase wrapping

PolSAR CPD Model for Snow Depth Estimation

- Assumption of snow anisotropy
 > Depolarization factors along main axes
 > Effective permittivity
 - \rightarrow refractive indices for HH and VV

• CPD:

$$\Phi_{CPD} = (-1) \frac{4\pi}{\lambda} \Sigma \Delta Z_s \left(\sqrt{n_V^2 - \sin^2(\Theta)} - \sqrt{n_H^2 - \sin^2(\Theta)} \right)$$
$$\Delta \zeta(\rho, A, \Theta)$$

Leinss et al., Snow Height Determination by Polarimetric Phase Differences in X-Band SAR Data, 2014 Leinss et al., Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series, 2016

SAR Data

- TerraSAR-X (TSX) and TanDEM-X (TDX)
- X-Band measurements
- Svalbard

- Short time series for the winter 2020/21 and 2021/22
- Dual polarized data: HH and VV polarization
- Incidence angles of around 39°
- Temporal baseline 11 days

12

AWI Test Site

- Bayelva test site located on Svalbard
- Evaluation of automated monitoring techniques for SWE measurements
- Since August 2019: sensor installed by Alfred-Wegener-Institute (AWI)
 - Measures SWE with a passive gamma ray sensor
 - Temporal resolution: 6 hours

Jentzsch, K. , Bornemann, N. , Cable, W. , Gallet, J. C. , Lange, S. , Westermann, S. and Boike, J. (2020): Near real-time observations of snow water equivalent for SIOS on Svalbard – (SWESOS) , doi: 10.5281/zenodo.4146835

InSAR Coherence

 Coherences below 0.3 are masked out (9x9 Window)

DLR

SWE Estimation using DInSAR Phase Without Phase Wrap Correction

- ΔΦ_s between [-π, π]
 → only limited range of SWE change can be retrieved using the X-band measurements
 - ~ [-8 mm, +8 mm]
- Underestimation of SWE changes above this threshold

SWE Estimation using DInSAR Phase – I. Correction In-Situ

- In-Situ measurements used to check if SWE change lies above phase wrap threshold
 → if yes, phase cycle is added
- High agreement
- Phase wraps are one of the main limitations

SWE Estimation using DInSAR Phase – II. Correction Copol-Phase-Difference (CPD)

 CPD model to relate the CPD change between two measurements to the amount of fresh snow

- Assuming A = 0.2 (fresh snow)
- Example CPD = 10°
 - For snow density of 0.1 and 0.2 g/cm3
 → 1 phase cycle needs to be added
 - For snow density of 0.3 g/cm3
 → 2 phase cycles need to be added

SWE Estimation using DInSAR Phase – II. Correction Copol-Phase-Difference (CPD)

- CPD change used to check if SWE change lies above phase wrap threshold
 → if yes, phase cycle is added
- Higher agreement compared to no correction
- Not all measurements are corrected → snow metamorphism between measurements

Summary

- SWE retrieval results show a good agreement with the ground measurements after correcting the phase wraps
- Phase wraps of the interferometric phase are one of the main limitations when using X-band measurements with 11 days temporal baseline
- CPD model can help to predict some phase wraps, but the performance is limited due to snow structure change between the measurements

Outlook

- So far: DInSAR and CPD were used separately
 - \rightarrow DInSAR Phase to estimate SWE
 - \rightarrow CPD to estimate snow depth
- CPD change has also an influence of the DInSAR phase in the VV and HH channel
 - → Influence on DInSAR SWE estimation if snow microstructure changes between the acquisitions
 - \rightarrow Needs to be investigated
- Combination of different frequencies

