

Snow from Space

Combined analysis of Snow Water Equivalent from Cosmic Ray Neutron Sensors and Fractional Snow Cover from Sentinel and MODIS

Nora Krebs¹, Paul Schattan¹, Sascha Oswald², Martin Schrön³, Martin Rutzinger¹, Johann Stötter¹

¹ Institute of Geography, University of Innsbruck, Austria

² Institute of Environmental Science and Geography, University of Potsdam, Germany

³ Department of Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research – UFZ Leipzig, Germany

Overall Research Goal

A better understanding of the **Cosmic Ray Neutron Sensing** (CRNS) signal to make **Snow Water Equivalent** (SWE) measurements in heterogeneously distributed snowpacks more reliable.

Cosmic Ray Neutron Sensing (CRNS)

Estimating SWE from CRNS

Calibration of the Neutron-to-SWE conversion function

Is every station suited for SWE measurements with CRNS?

A classification of Europe-wide CRNS stations after Sentinel-2 and MODIS Fractional Snow Cover (FSC) products

Research sites:

- COSMOS-EU network \bigcirc (Bogena et al., 2022)
- Moosbeere network \bigcirc

Approach:

Weisssee

Sentinel-2 and MODIS Fractional Snow Cover (FSC) Products

Comparison of Neutron Count Rates and Fractional Snow Cover

Classification after 'summer' and 'winter' count rates

Classification after 'summer' and 'winter' count rates

Comparison of all Europe-wide CRNS stations with Altitude

Spatial Uncertainty: Effects of Sentinel-2 and MODIS resolutions

Station: Hohe Mut, 20.09.2022

Planet (3 m)

False Color Images - R/G/B: NIR/red edge/coastal blue

Sentinel-2 (20 m)

MODIS (500 m)

R/G/B: NIR/Red/Blue

Spatial Uncertainty

Effects of Sentinel-2 and MODIS resolutions

FSC Differences

- MODIS FSC is generally lower than Sentinel-2 FSC •
- MODIS produces never FSC = 100 % .
- Modis produces **often FSC > 0 %** when Sentinel-2 • FSC = 0%

Differences in FSC may be related to the difference in spatial resolution and FSC computation algorithm

Quality Uncertainty: Masking of steep slopes

Station: Hohe Mut (Obergurgl, Austria)

- Station is located on a ridge
- Footprint is devided into **two slopes** with opposing aspects
 - NE-aspect: **cold** shadow side
 - SW-aspect: warm sunny side

Quality Uncertainty: Masking of slopes

Melting Season Effect

- Snow remains on **N-exposed slopes**, but slopes are often masked
 - Calculating FSC on remaining pixels would introduce bias ۲
 - Calculating FSC only in ,full high quality pixel scenes' would exclude valuable data

Hohe Mut: 20.09.2022

Sentinel-2 True Color Image (10 m)

Masked areas in FSC product

yrol

Slope (1 m) section on hillshade

a < 20 % **b** < 30% **c** < 40% **b** < 50% **b** > 50%

Sentinel-2 FSC-product quality control (20 m) medium 📃 high 📕 low minimal

Discussion

Outcomes

Outlook

- Remote Sensing FSC products can be used to interpret drops in the CRNS signal
- With increasing station altitude the neutron count signal shows a decreasing 'summer range' and a increasing 'winter range'

- Using CRNS to complement and calibrate FSC RS products
- Using RS products, to characterize stations after their suitability for SWE measurements with CRNS

Challenges • Extracting the **precise FSC** from RS products is **challenging**, due to masking, product uncertainties and coarse spatial resolution

Thank you!

