Arctic Permafrost: The importance of snow

Julia Boike, Inge Grünberg, Brian Groenke, Julia Martin, Moritz Langer

EARSel2023 Workshop Bern, February 2023

Snow properties: observations

Snow thermal conductivity

- spreads over a wide range (in space, but also within one season)
- incomplete (lacks data for some regions and times)
- no real "best fit"

Permafrost temperature: modeling

1D soil heat transfer model input:

- land surface temperature (MODIS)
- SWE (GlobSnow)
- observed snow (bulk) properties

 \rightarrow largest uncertainties due to thermal properties of the snow cover

Langer, Westermann, Heikenfeld, Dorn, Boike (2013). Satellite-based modeling of permafrost temperatures in a tundra lowland landscape. Remote Sensing of Environment 135, 12-24.

Arctic permafrost distribution

HELMHOLTZ

- defined by temperature
- subsurface phenomenon
- northern exposed landmass ~ 15%

Long Term Permafrost Observatories
 Warm maritime - Svalbard
 Cold continental - Siberia

Boike et al. (2023). Arctic Permafrost. Soil Encyclopedia, based on Obu et al. (2021)

Long term permafrost observatory data

Groenke, Langer, Nitzbon, Westermann, Gallego, Boike (2022). Investigating the thermal state of permafrost with Bayesian inverse modeling of heat transfer, The Cryosphere, in review. https://doi.org/10.5194/egusphere-2022-630.

Samoylov Permafrost Observatory, Siberia

Samoylov (Siberia) automated snow observation

- Snow station with SnowPackAnalyzer (SPA-2) unit in July 2016
 - 10 snow depth sensors (yellow)
- snow density along 3 horizontal straps (turquoise)
- snow temperature in 8 depths (red)

• Rounded grains

Depth hoar (hollow cups)

 \wedge

A Depth hoar (chains)

Symbols after Fierz et al. (2009)

Snow physical properties

Similarities (of the two winters)

- low density snow at base of snow from early winter on
- densification of all snow towards snow melt period (start in March)
 Differences
- low density snow in second year almost twice as thick

Snow-permafrost thermal dynamic

- snow cover build up very different between the two years
- during cold winter period, snow max thickness similar
- but effect of snow on soil temperatures different

Snow-permafrost thermal dynamic

modelling (Samoylov Island, Siberia).

Bayelva Permafrost observatory, Svalbard

+ acoustic snow depth sensors + time lapse cameras

Comparison data 2019/2020

Comparison data 2019/2020

Sampling March 2021

1111

1

Julia and Julia

K

Picture by Esther Horvath

200

Spatial variability observed with manual sampling (2020/2021)

Spatial variability of (A) SWE [mm], (B) snow depth [cm] and (C) the thickness of the basal ice layer [cm] in the 12 snow pits. The small circle marks the sensor footprint.

Snow-permafrost thermal dynamic

HELMHOLTZ

Winter 2015-2016

- rainfall destroyed the snow cover
- initial warming of soil due to infiltration of water; subsequent ice layer formation
 → cooling of soil
- basal ice cover persisted until spring 2016

Automated measurements reveal complexity in Arctic snow packs (depth hoar/ basal ice layer formation)

Spatial variability in the snowpack structure makes it difficult to quantify these effects on a larger scale

Remote sensing could potentially provide spatially distributed measurements of snow properties

Thank you!

Questions: Julia.boike@awi.de

Picture by Esther Horvath