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ABSTRACT 

The on-going declines in biodiversity caused by global and local environmental changes call for 
improved monitoring and conservation schemes. Remote-sensing (RS) of earth surface stands at 
the forefront to tackle this challenge, by providing data at different spatial and temporal resolutions 
that can be related with a wide range of environmental variables. Spatiotemporal dynamics of 
ecosystems and vegetation functioning (depicting several facets of matter and energy fluxes) can 
affect habitat suitability and therefore the persistence of species and the patterns of biodiversity. In 
this study we analysed habitat suitability and species diversity patterns by combining Species 
Distribution Models (SDMs) with multi-temporal RS-based variables of vegetation primary 
productivity, seasonality and phenology calculated from MODIS products and also from 
MODIS/Landsat data fusion using the StarFM algorithm. Predictors’ related to structural variables 
of landscape composition and configuration were compared to functional variables of vegetation 
dynamics calculated from RS NDVI time-series in a Multi-model Inference (MMI) framework, 
allowing to assess the relative predictive importance of each set of variables. Multi-annual RS data 
was used to explore post-fire alterations in biodiversity and short-term changes in habitat suitability 
dynamics. Overall, MMI results showed a good support for vegetation functioning variables 
(derived from RS data) in some cases exceeding the model performance of structural landscape 
variables. In addition, multi-annual RS data were capable of improving habitat suitability models, 
evaluating short-term changes and assessing post-fire variations in biodiversity. We argue that 
coupling SDMs with RS functional indicators can provide early-warnings of changes affecting 
habitat suitability well before assessments based on structural indicators. Possible applications of 
this methodology range from the improvement of biodiversity monitoring schemes to the design of 
more effective conservation strategies by explicitly considering the spatiotemporal dynamics of 
ecosystems. 

INTRODUCTION 

Despite the increasing number of conservation initiatives, the rate of biodiversity loss does not 
appear to be diminishing, nor do the pressures upon species and their habitats (1). Recent 
quantitative scenarios of biodiversity change consistently indicate that this decline will continue 
throughout the 21st century, with global change and local land uses leading to alterations in 
terrestrial ecosystems (2). These pressing challenges lay the need of ecological science to provide 
tools and long-term datasets to accurately assess, monitor and report on biodiversity status and 
trends (3) in order to scientifically inform and specify strategies for biodiversity monitoring, 
management and conservation.  
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Identifying the factors that drive the distribution of species is thus at the core of ecological research 
aimed to prevent further loss of biodiversity (1). Species distribution models (hereafter SDMs (4)) 
combine observations of species occurrence or abundance with the spatial distribution of 
environmental factors to predict species distributions (5). They are widely used to describe 
patterns, to deliver spatiotemporal predictions at several scales (6) and to address fundamental 
questions such as the ecological impacts of climate and land-use changes (7). Recent advances in 
RS have strongly contributed to improve SDMs as well as biodiversity monitoring (8-11). The 
remotely sensed Normalized Difference Vegetation Index (NDVI) is one of the most extensively 
used vegetation indices in ecological applications, and has shown to improve distribution models 
for tree species (12). Many of the RS-based variables currently employed in ecological 
applications, such as productivity, biomass and leaf area index, can be used to characterize 
functional gradients that can be associated to species responses (8). Continuous RS data may 
further contribute to SDMs by improving spatial and temporal resolutions and by expanding the 
range of input variables (13). Moreover, as change and uncertainty are intrinsic components of 
ecosystems, which are shaped by an ensemble of deterministic and stochastic forces (14), the 
potential of RS data to inform on short-term ecosystem and landscape dynamics is a valuable 
asset to anticipate changes in the status of threatened species and habitats (15).  

In this context, the current study aimed to test: (i) the predictive ability of RS-based vegetation 
dynamics indices (calculated from annual NDVI time-series) to explain the distribution of species 
and general indicators of plant and bird species richness, and (ii) the usefulness of multi- multi-
annual time-series of RS indices of vegetation dynamics to enhance the predictive power of 
models of habitat suitability and to explore changes in selected biodiversity indicators. 

METHODS 

Study-areas and response variables 

Two study-areas were considered, both located in the North of Portugal. Study-area 1 (SA1) is 
bounded by -7.785°W to -7.471°W longitude and 41.391°N to 41.640°N latitude. It comprises the 
full extent of Vila Pouca de Aguiar municipality with an area of roughly 437 km2. In SA1, we aimed 
to analyse the spatiotemporal patterns of habitat suitability for Veronica micrantha Hoffmanns. & 
Link, a rare and vulnerable species as considered by IUCN. This species is endemic to Iberian 
Peninsula and protected by European law (Annexes II and IV – EU Habitats Directive). In Portugal, 
SA1 hosts an important proportion of its national population, and 30.9% of this area is included in 
the Natura 2000 network. Preliminary compilation of presence records from herbarium data and 
field surveys (with locations selected by a model-assisted sampling design (16)) were used to 
collect a total of 27 presence/absence records of the target species at a spatial resolution of 1km2. 

Study-area 2 (SA2) comprises the full extent of the Vez river watershed, a small basin (263km2) 
bounded by -8.526°W to -8.257°W longitude and 41.837°N to 42.017°N latitude. Elevation ranges 
from 15m a.s.l. up to 1420m. This area holds important biodiversity values, being 13.6% included 
in the Peneda-Gerês National Park and 43.3% in Natura 2000. However, between year 2000 and 
2012 roughly 37.0% of the area was burnt at least once and thus wildfires, along with LUC 
changes (mainly related to agricultural abandonment and scrub encroachment) present challenges 
for conservation. In SA2 we aimed to assess general indicators of species diversity for plants 
(overall species richness of vascular plants and richness of endemic species), as well as passerine 
bird species (including total diversity per sample unit (α), average β-diversity/dissimilarity of 
species assemblages, and species richness by feeding group including insectivorous, omnivorous 
and granivorous species). A two-stage sampling design (17), with stratified random sampling in the 
first stage and systematic sampling in the second, was implemented to select a total of 120 sample 
units with 200x200m for field-surveys on plant and passerine species diversity. 
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Remote-sensing data processing and calculation of vegetation dynamics indices 

For SA1, the MODIS MOD13Q1 250m product, a NDVI time-series of 16-days composites, was 
used to calculate vegetation dynamics indices (VDI) for each year between 2001 and 2010 
(calibration year). The double logistic function-fitting method was applied to reduce noise effects on 
data, generating a smoothed NDVI curve for each year which was used to calculate VDI (18, 19). 
These two procedures were performed using the TIMESAT software (20). The largest value for the 
fitted function during the growing season and seasonal amplitude were calculated to represent 
primary productivity. The time for the start of the growing season (in days) and the time for the mid 
of the growing season (zonal maximum; in days) were selected to represent phenology. All VDI 
variables were up-scaled to the same spatial resolution of species records (1km2) using the mean 
(for seasonal amplitude and start of growing season) or the maximum (for mid of growing season 
and the maximum value) as aggregation functions. To characterize water availability we used 
MODIS MOD16A3 actual evapotranspiration (mm.year-1) product (21) with a spatial resolution of 
1km2. From soil data (obtained from national authorities) we calculated the % cover of different soil 
types. The national fire database was used to compute the average burnt area between year 2001 
and 2009 and the trend slope (using Sen-Theil’s method).  

Vegetation indices for SA2 were calculated for years 2014 (calibration year) and 2007 from 
MODIS/Landsat data fusion using the StarFM algorithm (22). Surface reflectance data were 
obtained from MODIS MOD09Q1 data product at 250m/8-days composites for the red and NIR 
bands. Landsat post-processed data was obtained from the USGS/ESPA service. After 
determining the best MODIS/Landsat comparison pairs for performing data fusion, StarFM was 
employed to calculate surface reflectance values for both bands for each available MODIS date. A 
time-series of NDVI was then calculated and a Savitzy-Golay smoothing filter was applied to 
remove spurious observations and increase signal-to-noise ratio. To represent primary productivity 
we calculated the minimum, maximum, average and median values of the growing season based 
on the smoothed NDVI annual time-series. For representing seasonality during growing season we 
calculated the: standard-deviation, coefficient of variation, mean-absolute deviation, inter-quantile 
differences, as well as the green-up and senescence rates. Phenological aspects were portrayed 
by the day of maximum value during the growing season; using this variable, we also calculated 
the cosine and sine transformations to represent the degree of “summerrness” and “winterness”. In 
order to upscale Landsat/MODIS fusion data (30×30m) to the same spatial resolution of 
biodiversity data (200×200m) we used the zonal minimum, maximum, average and standard-
deviation statistics. For both areas, spatial data on land use/cover (LUC; available from local 
authorities with a MMU of 1ha) was used to calculate landscape composition variables (e.g., % 
cover of agroforestry), and landscape configuration metrics (e.g., edge density, median patch size). 

Modelling framework 

Predictor variables were pre-selected based on their intrinsic ecological properties, current 
literature, field observations and exploratory statistical analysis (not shown) using correlation 
analyses and preliminary model fitting to investigate the relation between response variables and 
predictors. The response variables (SA1 – V. micrantha habitat suitability; SA2 – plant/bird species 
richness) were related to predictor variables using Generalized Additive Models (GAM). GAM are 
an extension of generalized linear models recognized as a powerful and versatile method (4) due 
to the ability of including non-linear and asymmetric responses in species-environment relations. A 
multi-model inference framework (MMI) based on Akaike Information Criterion, with a correction for 
finite sample size (AICc), was used for comparing and ranking multiple competing model 
hypotheses (23). Competing hypotheses were mainly related to vegetation functioning/dynamics 
(productivity, phenology and seasonality) and landscape composition/configuration. For each 
response variable, a null-model considering only an intercept term was also used for comparing 
model fitness. Models exhibiting substantial (0≥ΔAICc≤2) and moderate support (2>ΔAICc≤4) were 

selected to the confidence set. Akaike weights (wi), were used to represent the different degree of 
support of each model hypothesis (wi=0, no support; wi=1, full support). Additionally, as auxiliary 
measures of model fitness we also calculated the adjusted R-squared (R2), explained deviance 
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(D), Area Under the ROC curve (AUC; only for SA1 with binomial response variable), and the 
Spearman correlation between the observed and predicted values (Sp. ρ; only for SA2 response 
variables). To avoid spurious effects due to high correlation or collinearity between predictors we 
calculated Variance Inflation Factors (VIF) for the global model (a model incorporating all predictor 

terms from the various hypotheses tested) for each response variable; this verified that √𝑉𝐼𝐹 was 
lower than 2, thus signalling low to moderate multicollinearity (not shown). 

Exploring multi-annual time-series of vegetation indices 

With the purpose of evaluating the added value of including multi-temporal RS variables for 
explaining V. micrantha habitat suitability in SA1, we tested two types of model predictions (MPs) 
based on: (i) single-year predictions using data solely for the calibration year of 2010, and (ii) a 
multi-temporal mean, by hindcasting and then averaging predictions across the entire 2001-2010 
period, generating a 10-year long habitat suitability time-series. These two types of MPs were then 
evaluated through holdout cross-validation (HCV; 500 evaluation rounds with 70%/30% train/test 
partition) by calculating the AUC and True-skill statistic (TSS) metrics. 

In the Vez river watershed (SA2), wildfires are a prevailing ecological driver of disturbance, with a 
large wildfire in year 2006 consuming roughly 20% of the area. We tested the usefulness of VDI 
calculated from multi-temporal MODIS/Landsat data fusion to assess the potential rate of recovery 
and/or loss following the early post-fire (year 2007) and the current calibration date (year 2014). To 
illustrate this, we calculated the change rate of species richness of passerine birds by hindcasting 
the model (calibrated in 2014) for the year 2007 and comparing the two dates for locations that 
have not suffered another wildfire (besides the one recorded in 2006) between 2000 and 2013.  

RESULTS 

Overall, for SA1, MMI results for habitat suitability of V. micrantha (Table 1) revealed that, in 
decreasing order of support, competing models related to vegetation productivity, water availability, 
soil types, fire disturbance and landscape composition obtained substantial support (ΔAICc≤2 and 
wi between [0.25, 0.11]; Table 1). Competing models related to vegetation phenology and 
landscape configuration obtained moderate support (2>ΔAICc≤4). The intercept-only model 

obtained the lowest support. 

Results for SA2, which analysed general indicators of species richness for plants and passerine 
birds, showed that total vascular plant species richness was largely explained by landscape 
composition variables (wi=1.00; Table 2), mainly related with the % cover of agricultural areas and 
different types of forested areas, including evergreen needleleaf and deciduous broadleaf. 
However, when considering only the subset of Iberian endemic species, RS-based vegetation 
indices of seasonality obtained the highest support, followed by landscape composition, with model 
weights, wi equal to 0.57 and 0.43 respectively (Table 2).  

 
Table 1 – Multi-model rankings obtained for SA1, testing habitat suitability for V. micrantha. Only 
models included in the confidence set (represented by ΔAICc≤4) are shown in table. K – number of 
model parameters, AICc – Akaike Information Criterion, wi – Akaike model weights, LogLik – model 
log-likelihood, R2 – adjusted R-squared, D – explained deviance, and, AUC – Area Under the ROC 
curve. 

Response Model hypothesis K AICc ΔAICc wi LogLik R
2
 D AUC 

V. micrantha 
habitat 
suitability 

Veg. productivity /seasonality 4 19.61 0.00 0.25 -4.94 0.66 0.55 0.81 

Water availability 4 20.02 0.42 0.20 -5.42 0.65 0.51 0.85 

Soils 2 20.22 0.61 0.18 -7.73 0.55 0.29 0.76 

Fire disturbance 4 20.86 1.25 0.13 -5.11 0.66 0.53 0.79 
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Landscape composition 3 21.19 1.59 0.11 -6.17 0.62 0.44 0.75 

Veg. phenology 3 22.36 2.76 0.06 -7.07 0.58 0.35 0.76 

Landscape configuration 3 23.11 3.50 0.04 -7.64 0.55 0.30 0.74 

 
Table 2 – Multi-model rankings obtained for SA2 including plant and bird species general 
biodiversity indicators. Only models included in the confidence set (ΔAICc≤4) are shown in table. K 
– number of model parameters, AICc – Akaike Information Criterion, wi – Akaike model weights, 
LogLik – model log-likelihood, R2 – adjusted R-squared, D – explained deviance, and, Sp. ρ  – 
Spearman correlation between observed and predicted values. 

Response Model hypothesis K AICc ΔAICc wi LogLik R
2
 D Sp. ρ 

Vascular plants species 
richness 

Landscape composition 12 1537.23 0.00 1.00 -755.33 0.53 0.57 0.77 

Endemic plants species 
richness 

Veg. seasonality 6 551.60 0.00 0.57 -269.59 0.23 0.26 0.50 

Landscape composition 9 552.18 0.57 0.43 -266.51 0.23 0.29 0.54 

Passerine birds species 
richness 

Landscape composition 8 516.41 0.00 0.57 -249.31 0.15 0.19 0.42 

Veg. productivity 5 518.36 1.96 0.21 -254.23 0.12 0.13 0.46 

Veg. phenology 4 518.82 2.41 0.17 -254.79 0.10 0.12 0.35 

Average β-diversity/ 
dissimilarity of passerine 
bird species 

Landscape composition 7 433.63 0.00 0.33 -209.45 0.08 0.12 0.30 

Veg. phenology 5 433.75 0.12 0.31 -211.21 0.07 0.10 0.30 

Landscape configuration 6 434.92 1.29 0.17 -210.64 0.07 0.11 0.32 

Veg. seasonality 5 436.32 2.69 0.09 -212.46 0.04 0.07 0.35 

Veg. productivity 4 437.05 3.42 0.06 -214.69 0.02 0.04 0.20 

Insectivorous passerine 
birds species richness 

Landscape composition 8 423.64 0.00 0.61 -203.44 0.14 0.18 0.35 

Landscape configuration 4 425.57 1.93 0.23 -208.59 0.10 0.10 0.32 

Veg. phenology 4 427.63 3.99 0.08 -209.14 0.08 0.09 0.34 

Omnivorous passerine birds 
species richness 

Landscape configuration 5 308.29 0.00 0.22 -148.49 0.10 0.13 0.33 

Landscape composition 7 308.38 0.09 0.21 -146.78 0.14 0.16 0.40 

Veg. phenology 4 308.59 0.30 0.19 -150.21 0.12 0.10 0.33 

Veg. productivity 3 308.69 0.40 0.18 -151.44 0.08 0.08 0.31 

Veg. seasonality 4 308.82 0.53 0.17 -150.35 0.09 0.10 0.34 

Granivorous passerine birds 
species richness 

Veg. seasonality 5 320.70 0.00 0.90 -155.58 0.21 0.20 0.51 

 

Also for SA2, when considering indicators related to total richness and average β-diversity of 
passerine species, features associated to landscape composition attained the highest support (wi 
of 0.57 and 0.33, respectively). However, models including RS variables of vegetation phenology, 
seasonality and primary productivity also recorded good to moderate support for average β-
diversity (respectively, wi=0.31, 0.09 and 0.06); and also, productivity followed, with less support by 
phenology for total passerine species richness (respectively, wi=0.21 and 0.17). When considering 
species richness of insectivorous birds, landscape composition and configuration obtained greater 
support (wi equal to 0.61 and 0.23 respectively) and only moderate support for vegetation 
phenology (wi=0.08; Table 2). In case of species diversity of omnivorous bird species, higher 
model complexity was found with very similar support obtained for landscape variables but also for 
vegetation dynamics. Regarding the species richness of granivorous birds, a very strong support of 
vegetation seasonality dynamics was found (wi=0.90; Table 2). 
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Overall, MMI summary results for bird 
diversity indicators (Figure 1) showed that 
structural metrics related to landscape 
composition were highlighted as important 
an equal number of times as vegetation 
functional attributes related to phenology 
(80%). Also for bird diversity indicators, RS 
indices of vegetation seasonal variation and 
primary productivity along with landscape 
configuration were selected 60% of the times 
as having substantial or moderate model 
support in MMI. Regarding plant species 
indicators, overall structural landscape 
metrics, particularly landscape composition 
attained highest scores (100%) but closely 
followed by vegetation functional attributes 
related to seasonality (67%) and to a lesser 
extent productivity (33%) and phenology 
(33%) along with landscape configuration 
(33%). 

Inter-annual dynamics 

For SA1, two types of model predictions 
(MP) were performed and compared: (i) 
single-year predictions using solely data for 
the calibration year of 2010 (MP-1), and (ii) 
composite multi-temporal mean predictions, 
averaging predicted habitat suitability 
between 2001 and 2010 (MP-2). Although 
the performance statistics showed good 
results for MP-1, with AUC=0.88 and 
TSS=0.82, the inclusion of dynamic data in 
multi-temporal predictions further increased 
model accuracy in MP-2 (AUC=0.95, 
TSS=0.92). A considerable portion of the 
study-area was considered suitable for the 
test species, at least for one year of the focal 
period (Figure 2). However, when focusing 
on areas most often predicted by the 
averaged-model, this area decreased 
considerably as well as the spatial contiguity 
of suitable habitat (darker areas in Figure 2). 
Suitable areas of higher stability in the 10-
year period are generally distributed along 
low-elevation areas and valleys, often close 
to rivers or areas with high water availability, 
and locations with high productivity and 
seasonality dynamics.  

Results on the % change rate of passerine 
bird species richness between 2007 and 
2014 evidence large areas that may have 
undergone a lagged loss in avifauna 
diversity following the 2006 wildfires (only 

Figure 2 – Number of suitable habitat predictions 
between 2001 and 2010 for each grid unit in SA1 
using model-averaged predictions (a); and, SA2 
geographic location (b,c). Areas more often 
predicted in the temporal interval of the study 
have darker tones. 

Figure 1 – Summary of multi-model results 
highlighting the % number of times that a given 
hypothesis was selected for plant species 
indicators (three total) and bird species indicators 
(five in total). 
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considering areas in recovery), as shown in Figure 3. However, other areas show an increase in 
species diversity towards 2014, probably evidencing some recovery to pre-fire conditions (Figure 
3). 

 

 

Figure 3 – (a) Species richness of passerine birds in SA2 as predicted by GAM including all 
predictors related with vegetation indices for calibration year of 2014 (greener areas indicate higher 
diversity), and (b) % change in species richness of passerine birds following 2006 wildfires in 
recovering areas (solely affected by fire in 2006 between 2000 and 2013). 

DISCUSSION AND CONCLUSIONS 

Multi-model inference showed the importance of structural variables related primarily to landscape 
composition (and secondly, to configuration), however it also emphasized a good predictive ability 
for remote sensing variables related to vegetation dynamics and functioning (9, 12, 24). 
Additionally, this technique provided insights into which specific aspects of annual vegetation 
dynamics linked to timing/phenology, seasonality fluctuations and/or primary productivity mostly 
affects species distribution or diversity patterns for different groups. Overall, our results stress the 
importance of considering landscape attributes related to landscape function, composition and 
configuration to explain diversity patterns at the local scale. However, for some indicators, such as 
the species richness of endemic plants or the species richness of granivorous birds, vegetation 
indices derived from high temporal resolution RS data may in fact provide better predictive results. 
High-temporal RS data of vegetation dynamics also showed promising results for assessing 
potential impacts of fire on biodiversity, as well as, potential recovery towards pre-fire conditions. 
Although more testing is required, this may suggest that RS-based vegetation indices may 
contribute for effectively mapping and monitoring a large array of biodiversity indicators over large 
areas due to their synoptic and high-temporal resolution (10, 11, 25). 

Based on multi-temporal data, our methodological approach allowed exploring the effects of short-
term environmental variations on the spatiotemporal dynamics of habitat suitability. This is 
especially useful since these fluctuations may pose additional threats to species with already high 
extinction risk. Habitat suitability time-series can also provide useful inputs for systematic 
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conservation planning, allowed assessing and ranking suitable habitat areas according to their 
relative stability in time. Functional indicators of vegetation dynamics could provide early warnings 
of tipping changes in ecosystem state and processes (26) affecting habitat suitability and general 
biodiversity indicators, well before assessments based on structural landscape metrics calculated 
from LUC maps. Even at a local scale, functional indicators of vegetation dynamics may provide 
useful data for biodiversity monitoring in combination with habitat suitability/diversity models. This 
may be especially interesting if landscape dynamics is prone to frequent and various types of 
disturbances (e.g., frequent fires or LUC changes) not easily measured by low frequency-update 
LUC data products provided by environmental/conservation agencies. 

ACKNOWLEDGEMENTS 

João Gonçalves was supported by the Portuguese Science and Technology Foundation (FCT) 
through PhD grant SFRH/BD/90112/2012. Isabel Pôças was supported by FCT through 
postdoctoral grant SFRH/BPD/79767/2011. Bruno Marcos was supported by FCT and 
FEDER/COMPETE (project IND_CHANGE; PTDC/AAG-MAA/4539/2012; FCOMP-01-0124-
FEDER-027863). A. Lomba was supported by the FCT through Post-Doctoral Grant SFRH/BPD/ 
80747/2011. R. Sousa-Silva was supported by a PhD grant in the framework of the FORBIO 
Climate project, financed by BRAIN.be. Emilio Civantos and A. T. Monteiro were supported by 
Project “Biodiversity, Ecology and Global Change” co-financed by North Portugal Regional 
Operational Programme 2007/2013 (ON.2 – O Novo Norte), under the National Strategic 
Reference Framework (NSRF), through the European Regional Development Fund (ERDF). This 
work was partially funded by FEDER funds through COMPETE and by National Funds through 
FCT under the project PTDC/AAG-MAA/4539/2012 / FCOMP-01-0124-FEDER-027863 
(IND_CHANGE). 

 

REFERENCES 

1. Butchart, S.H.M., et al., Global Biodiversity: Indicators of Recent Declines. Science, 2010. 
328(5982): p. 1164-1168. 

2. Pereira, H.M., et al., Scenarios for Global Biodiversity in the 21st Century. Science, 2010. 
330(6010): p. 1496-1501. 

3. Magurran, A.E., et al., Long-term datasets in biodiversity research and monitoring: 
assessing change in ecological communities through time. Trends in Ecology & Evolution, 
2010. 25(10): p. 574-582. 

4. Guisan, A. and N.E. Zimmerman, Predictive habitat distribution models in ecology. 
Ecological Modelling, 2000. 135: p. 147–186. 

5. Araújo, M.B. and A. Guisan, Five (or so) challenges for species distribution modelling. 
Journal of Biogeography, 2006. 33(10): p. 1677-1688. 

6. Elith, J. and J. Leathwick, Species Distribution Models: Ecological Explanation and 
Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 
2009. 40(1): p. 677-697. 

7. Broennimann, O., et al., Do geographic distribution, niche property and life form explain 
plants' vulnerability to global change? Global Change Biology, 2006. 12(6): p. 1079-1093. 

8. Miller, J. and J. Rogan, Using GIS and remote sensing for ecological mapping and 
monitoring, in Integration of GIS and Remote Sensing, V. Masev, Editor. 2007, Wiley: 
Chichester, West Sussex, England. 



35th EARSeL Symposium – European Remote Sensing: Progress, Challenges and Opportunities  
Stockholm, Sweden, June 15-18, 2015 

9 

9. Bradley, B.A. and E. Fleishman, Can remote sensing of land cover improve species 
distribution modelling? Journal of Biogeography, 2008. 35(7): p. 1158-1159. 

10. Pettorelli, N., et al., Satellite remote sensing for applied ecologists: opportunities and 
challenges. Journal of Applied Ecology, 2014. 51(4): p. 839-848. 

11. Nagendra, H., et al., Remote sensing for conservation monitoring: Assessing protected 
areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 
2013. 33(0): p. 45-59. 

12. Zimmermann, N.E., et al., Remote sensing-based predictors improve distribution models of 
rare, early successional and broadleaf tree species in Utah. Journal of Applied Ecology, 
2007. 44(5): p. 1057-1067. 

13. Saatchi, S., et al., Modeling distribution of Amazonian tree species and diversity using 
remote sensing measurements. Remote Sensing of Environment, 2008. 112(5): p. 2000-
2017. 

14. Bjørnstad, O.N. and B.T. Grenfell, Noisy Clockwork: Time Series Analysis of Population 
Fluctuations in Animals. Science, 2001. 293(5530): p. 638-643. 

15. Cabello, J., et al., The ecosystem functioning dimension in conservation: insights from 
remote sensing. Biodiversity and Conservation, 2012. 21(13): p. 3287-3305. 

16. Guisan, A., et al., Using Niche-Based Models to Improve the Sampling of Rare Species. 
Conservation Biology, 2006. 20(2): p. 501-511. 

17. Gruijter, J.d., et al., Sampling for Natural Resource Monitoring. 2006, Berlin Heidelberg: 
Springer-Verlag. 326. 

18. Heumann, B.W., et al., AVHRR derived phenological change in the Sahel and Soudan, 
Africa, 1982–2005. Remote Sensing of Environment, 2007. 108(4): p. 385-392. 

19. Eklundh, L. and P. Jönsson, TIMESAT 3.0. Software Manual. 2010, Lund University. 

20. Jönsson, P. and L. Eklundh, TIMESAT - a program for analyzing time-series of satellite 
sensor data. Computers & Geosciences, 2004. 30(8): p. 833-845. 

21. Mu, Q., M. Zhao, and S.W. Running, Improvements to a MODIS global terrestrial 
evapotranspiration algorithm. Remote Sensing of Environment, 2011. 115(8): p. 1781-1800. 

22. Gao, F., et al., On the blending of the Landsat and MODIS surface reflectance: predicting 
daily Landsat surface reflectance. Geoscience and Remote Sensing, IEEE Transactions 
on, 2006. 44(8): p. 2207-2218. 

23. Burnham, K.P. and D.R. Anderson, Model Selection and Multi-Model Inference: A Practical 
Information-Theoretic Approach. 2nd ed. 2002, New York: Springer-Verlag. 

24. Cord, A.F., et al., Comparing the suitability of classified land cover data and remote sensing 
variables for modeling distribution patterns of plants. Ecological Modelling, 2014. 272(0): p. 
129-140. 

25. Alcaraz-Segura, D., et al., Use of Descriptors of Ecosystem Functioning for Monitoring a 
National Park Network: A Remote Sensing Approach. Environmental Management, 2009. 
43(1): p. 38-48. 

26. Scheffer, M., et al., Anticipating Critical Transitions. Science, 2012. 338(6105): p. 344-348. 

 


