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ABSTRACT 

Tropical forest natural and anthropogenic changes can be tracked using a pixel based time-series 
analysis of multi-temporal Interferometric Synthetic Aperture Radar (InSAR) backscatter and 
coherence provided by TanDEM-X.  A pixel trajectory is defined as a set of values of all resolution 
elements (backscatter or coherence) at the same row and column position in the stack of images. 
Analysis of the trajectories over an area by means of a set of parameters (features) that 
characterize its time evolution can give insight on the nature and changes of tropical forest due to 
disturbance events (e.g. deforestation) but also due to natural changes in environmental conditions 
(e.g. rainfall). The following set of trajectory features was computed: linear fitting (trend), dispersion 
around trend (RMSE), maximum change (swing), statistics of the trajectory finite difference at one 
step (variance and intermittency). Results indicate that linear regression parameters captured 
changes due to forest/non forest conversion. The study reports results from a highly disturbed 
tropical forest environment in the Republic of Congo. 

INTRODUCTION 

The Congo Basin hosts the second largest dense humid tropical forest in the world after the 
Amazon rainforest playing a crucial role in the global climate system. Mapping tropical forests is a 
requirement for international initiatives such as Reducing Emission from Deforestation and Forest 
Degradation (REDD+). This can be best achieved using Synthetic Aperture radar such as 
TanDEM-X. TanDEM-X coherence can improve the separability between thematic classes as it is 
modulated by the volume through decorrelation and this depends on forest canopy scatterers and 
can be linked to canopy structure (e.g. canopy cover) (1). We present results from a site located in 
the Sangha Department (Republic of Congo) which covers 25 x 40 km (Figure 1). Clearing of 
secondary forest around urban centers is extensive for shifting cultivation (2). The Ngombe and 
Pokola logging concession were also situated in the study site where, exploitation of forest through 
selective logging was undertaken between 1985 and 2008.  
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Figure 1: Study site location in the Sangha Department, Republic of Congo (RoC). Data Source: 
World Resources Institute (WRI) and DLR. 

METHODS 

Dataset and Processing 

Six TanDEM-X StripMap scenes (supplied by DLR through the VEGE03030 AO) were acquired 
between 2012 and 2014, at HH polarization, 47º incidence angle and descending mode (Table 1). 
The data was processed using SARScape software (5.0) (3) and included the following steps: a) 
multi-looking (2 range and 2 azimuth looks, corresponding to a slant range pixel size of 3.69 x 3.73 
m); b) interferometric workflow (interferogram generation and flattening, adaptive local frequency 
filter and coherence generation); c) co-registration d) multi-temporal filtering e) geocoding in a 
Geo-Global Lat/Lon system with 3.33 10-5 degree pixel size (approximately 4 m). Both the 
backscatter (power) and the coherence datasets were co-registered and filtered to reduce noise 
(speckle and coherence estimator variance) using the multi-temporal filter implemented in 
SARScape and based on the principle proposed in (4). Very High Resolution data acquired in 
December 2013 available from Google Earth (Figure 2), and accumulated precipitation data from 
Tropical Rainfall Measuring Mission (TRMM) were used as reference data. Visual interpretation of 
the reference datasets was used for training the supervised analysis by selecting 15x15 pixels 
Areas Of Interest (AOI). Selected thematic classes are: lowland forest, swamp forest, agriculture 
and grassland. It is important to note, in the context of the time-series analysis performed in this 
work that the class definition corresponds to the situation at t4, which is the date of the available 
Google Earth dataset with the highest spatial resolution. 

Table 1: Multi-temporal stack used to compute multi-temporal pixel trajectories. 

Time Date Baseline (m)  Rainfall (mm)* 

t1 05/12/2012    95.3 0 

t1 14/03/2013 24.5 0.587 

t3 19/05/2013 24.5 20.657 

t4 25/12/2013   52 7.603 

t5 03/04/2014  111.2 29.843 

t6 06/05/2014 63 12.382 

*based on TRMM data for a period of a 48 h before the date of acquisition. 
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Figure 2: Areas of Interest (AOI) used for the analysis on Very High Resolution Google Earth 
imagery acquired on December 17th, 2013 (Data Source: Google Earth, 2013). 

Multi-temporal Pixel Trajectories 

A pixel trajectory is defined as a set of values of all resolution elements at the same row and 
column position in the stack of images. The following set of trajectory features were computed on 
either the multi-temporal backscatter stack or multi-temporal coherence: a) Trend analysis by linear 
regression (line intercept, slope and deviations from the trend); b) Swing c) Variance of the de-
trended trajectory’s finite differences at 1 step and d) Maximum of the absolute value of the finite 
difference vector.  

a) Trend analysis by linear regression of   , where P is the pixel value at date j, n is 

the number of dates in the multi-temporal stack. This step yields the fitting line with two parameters 
(slope m and intercept c), and the root mean squared deviations of the points from the line (rms): 

 

  (1) 

 (2) 

 

b) Swing: 

  
(3) 

c) Variance of the de-trended trajectory’s finite differences at 1 step (a measure of departure 
velocity  from trend) : 

 (4) 

 (5) 

 (6) 

d) Maximum of the absolute value of the finite difference vector (a measure of large intermittent 
events): 

 (7) 

RESULTS 

Multi-temporal Pixel Trajectories of SAR Backscatter 

Results indicate that multi-temporal pixel trajectories pick up changes related to: (i) 
environmental conditions (seasonality and rainfall) and (ii) forest disturbance (e.g. deforestation). 
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Mean Radar Cross Section (RCS) for four AOI indicates that the variations for lowland forest and 
swamp forest are not as marked as those for agriculture and grassland (Figure 3). The changes in 
lowland forest and swamp forest can be mainly attributed to changes due to environmental effects 
(e.g. moisture) and not due to anthropogenic disturbance such as clearing. 
Lowland forest presents high RCS throughout the time series with no significant sign of 
disturbance since the area is situated far from the main villages and towns, outside of the logging 
concessions. However, there is a noticeable fluctuation in RCS for this class due to rainfall events, 
these changes being all < 1dB. Swamp forest also presents small fluctuations in RCS (<1dB), 
these being also attributable to the impact of environmental conditions.Given the canopy density of 
both forest types, the extinction at X-band is large (penetration small), which makes the average 
return similar over areas comprising several crowns. Whereas, at shorter scales (e.g. a few meters) 
more RCS variation is expected for the less homogeneous lowland forest. 
Greater change in RCS is noticeable for the agriculture and grassland classes, this being a 
consequence of anthropogenic disturbance due to the proximity to urban areas and the increased 
accessibility to the area. A noticeable change in RCS for class agriculture is detected (highest RCS 
is -10.8 dB and lowest RCS is -19.2 dB). The grassland trajectory is similar in time development to 
the swamp forest one, but with overall lower RCS. This is in line with backscattering from a 
homogeneous vegetation layer, similar to the forest but with less scatterer number density. 
Grassland also undergoes changes especially between date 3 (-12.2 dB) with subsequent 
decrease to -14.3 dB at date 4. The high RCS is attributable to the presence of taller grass which is 
then cleared and converted into bare field in preparation for agriculture with the underlying 
influence of moisture conditions also contributing to the RCS (Figure 3d). 

Analysis of multi-temporal pixel features within an AOI (Figure 4) provide extra information to 
understand the RCS dynamics (Table 2). The swing is highest for the class agriculture, because of 
a discontinuity at t5 (decrease in backscatter) which is attributable to a change in terrain cover, 
with a transition from a surface with a vegetation layer, responsible of RCS similar to that of the 
forest areas, to a state of bare and smooth soil (Figure 3a). 

 Instead, the swing for both the lowland forest and the swamp forest is the lower. This feature 
indicates that the most dynamic classes are agriculture and grassland. The slope of the linear fit 
line also suggests that the trend in the class agriculture is very strong and negative (-60.9) while, 
the slope for the other 3 classes is positive with swamp forest having the lowest slope (1.1). The 
rms is highest for the class agriculture (1.7) and lowest for the lowland forest class (0.25). The 
variance of the finite differences is much higher for the class agriculture (10.5) compared to all the 
other classes. The same applies to the maximum absolute value of the differences (intermittency).  

 

Figure 3. Radar Cross Section (RCS) linear regression for four AOI. 
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Table 2: Backscatter multi-temporal features statistics (mean) for four AOI (a) agriculture; (b) 
lowland forest; (c) swamp forest and (d) grassland. 

Feature (a) (b) (c) (d) 

Swing 8.3 1.1 1.6 2.0 

Trend Slope -60.9 10.9 1.1 15.7 

Deviations from trend (rms) 1.7 0.2 0.5 0.7 

Variance 10.5 0.2 0.9 2.6 

Intermittency 29.0 0.5 1.7 5.2 

Multi-temporal Pixel Trajectories of Coherence 

Analysis of coherence for the same AOI revealed interesting trends (Figure 4 and 5). Coherence 
for class agriculture reveals that this is high until t5 (0.72) (04/2014) where a sharp discontinuity 
occurs (this is in line with the RCS trajectory). The drop in coherence signals the passage from a 
vegetation layer with volume decorrelation similar to that of grassland and forest, to bare soil, 
where decorrelation is attributable to the spatial heterogeneity in the dielectric properties of soil 
(moisture) (5). Lowland forest presents coherence which is lower than all the other classes apart at 
t2 where it is slightly above coherence for class grassland and at t5 (04/2014) and t6 (05/2014) 
where the class agriculture presents very low coherence. Lower coherence for lowland forest is to 
be expected, this is attributed to the spatially varying vertical structure (more heterogeneous 
canopy), calling for gaps and shadowing which modulate the volume decorrelation. Instead, 
swamp forest has a much more homogeneous canopy cover with smaller tree crowns and 
therefore, coherence is almost always higher compared to other classes.  

 

Figure 4: TanDEM-X coherence (R= 12/2012, G= 12/2013 and B= 05/2014) for four 15 x 15 pixel 
AOI. (a) agriculture; (b) lowland forest; (c) swamp forest and (d) grassland. 

 

Figure 5: TanDEM-X coherence trajectory from December 5th, 2012 to May 6th, 2014 for (a) 
agriculture (red); (b) lowland forest (green); (c) swamp forest (blue) and (d) grassland (black). 

 
Coherence multi-temporal features provide additional information to coherence trajectories over 
time within the AOI (Table 3). The results are in line with those reported about features of RCS 
trajectories.  
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Table 3: Coherence multi-temporal features statistics (mean) for four AOI (a) agriculture; (b) 

lowland forest; (c) swamp forest and (d) grassland. 

Feature (a) (b) (c) (d) 

Swing 0.18 0.10 0.049 0.031 

Trend Slope -2.25 -0.11 -0.09 0.20 

Deviations from trend (rms) 0.049 0.034 0.017 0.010 

Variance 0.0069 0.0046 0.0009 0.0005 

Intermittency 0.0204 0.0067 0.0015 0.0009 

CONCLUSIONS 

Results indicated that multi-temporal pixel trajectories using TanDEM-X InSAR data are a useful 
tool to follow the evolution of natural targets. However, it is important to distinguish between natural 
changes due to seasonality and environmental conditions (e.g. rainfall), as in the case of results 
provided for lowland tropical forest and swamp forest, and changes due to anthropogenic 
disturbance (conversion from forest to non-forest). It was found that the features are able to 
characterize for instance the conversion from forest to non-forest (deforestation). The slope of the 
linear trend indicates the magnitude of the change and whether the trend in backscatter is positive 
(vegetation regrowth) or negative trend (deforestation). The combination of RCS and coherence 
trajectories can be effective not only in detecting discontinuities in the ecosystem dynamics (such 
as those induced by human intervention, or intermittent natural events), but also to discriminate 
vegetation classes with a stationary evolution in time. The analysis will be extended in particular to 
look at areas which present a negative trend to provide estimates of deforestation. 
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