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ABSTRACT

Basic principles of radar polarimetry are introduced and
various optimization procedures for the propagation (scat-
tering) range operator equation and the received power
expressions are presented and compared. It is assumed that
the radar is a complete coherent dual orthogonal (A,B)
transmit/receive antenna system of high channel isolation
and antenna side-lobe reduction, where in the case of wave
interaction with a discrete stationary point target the prop-
agation (scattering) matrix is given by the 2x2 coherent
Jones (Sinclair) matrix [S(A,B)], the 2x2 complex Graves
power [G(AB)], the 3x3 or 4x4 complex covariance
matrix [2(A,B)], and the 4x4 real Mueller (Kennaugh)
power density matrix [M] for the symmetric (monostatic
reciprocal: Sag = Spa) or the asymmetric (general bistatic,
monostatic non-reciprocal: Sap ¢ Spa) cases, respectively.
Four separate optimization procedures are here introduced
for the symmetric case, demonstrating that for the coher-
ent (deterministic) scattering scenario the solutions ob-
tained from optimizing the pertinent power density
expressions associated with either [S(A,B)], [G(AB)],
[2(A,B)] and [M] are identical, and so approximately also
for the partially polarized case. Pertinent contrast en-
hancement optimization procedures for discrimination be-
tween two classes of targets, the ‘optimal polarimetric
contrast enhancement coefficients’: ‘opcec’ are intro-
duced and expressed in terms of power density expression
for the four scattering matrices [S(AB)], [G(AB)],
[Z(AB)] and [M] valid for the coherent and partially
polarized cases. Whereas, for the partially coherent case
more elaborate optimization procedures for the 3x3 covar-
iance and/or 4x4 Mueller matrices need to be employed
utilizing special properties of Lie group SU(n = 2,3,4)
expansions, i.e., the 2x2 Pauli spin [o;; i=0,1,2,3], the 3x3

Hausdorff (Gell-Mann) [§; i = 1,2,9] and the 4x4 Dirac
[6;1=0,1,2,15] matrices.

Based on this complete description of isolated and dis-
tributed scatterers, target classification, target-versus-
clutter discrimination, and optimal contrast enhancement
algorithms are derived and shown to be of great utility in
the proper interpretation of POL-RAD/SAR microwave
signatures in terrestrial and planctary remote sensing.

INTRODUCTION

The basic principle of radar polarimetry is based on the
concept of characteristic polarization states first intro-
duced by Kennaugh (Kennaugh, 1981-1992), who demon-
strated that there exist radar polarization states for which
the radar receives minimum/maximum power. This
min/max polarization state theory was extended primarily
by Huynen (Huynen, 1978; Huynen, McNulty, Hanson,
1975), who introduced the “polarization fork” concept,
and more recently by us (Boerner, 1980-81; Boerner, Liu,
Zhang, 1992) and at DLR-Oberpfaffenhofen (Tragl, 1992;
Gneburg, Ziegler, Tragl, Schroth, 1991). With the advent
of dual polarization coherent radar (Giuli, 1986) and POL-
RAD/SAR (van Zyl, 1986; Zebker, van Zyl, 1991) sys-
tems, radar polarimetry has become a subject of recurring
and globally intensifying interest in recent years (Berner,
1985-1992). In spite of extensive studies of this theory, a
final rigorous and complete formulation still is warranted
(Boerner, Yan, Xi, Yamaguchi, 1992). Different ap-
proaches were introduced for determining these charac-
teristic polarization states by using the voltage equation
[1], the eigenvalue problem of the power scattering matrix
(Huynen, 1965-78-75-92-90; Davidovitz, Boerner, 1986-
83; Kostinski, Boerner, 1395-1404-1987, Mieras, 1470-
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1471), the basis transformation techniques (Boerner,
1981-1980; Agrawal, Boerner, 1989-1992; Boerner, Xi,
1990-1992), the Mueller matrix approach for the
“degenerate coherent Stokes vector case” (Yan, Boerner,
1991, Boerner, Yan, Xi, 1992; Boerner, Yan Xi, Yamagu-
chi, 1992), and more recently, the properly corrected
polarimetric covariance matrix optimization procedure
(Boemner, Liu, Zhang, 1992; Tragl, 1992-1990, Tragl,
Gneburg, Schroth, Ziegler, 1991). All of these methods
are compared and it is demonstrated how each of them
contributes partially towards a complete understanding of
coherent scattering matrix properties.

It is shown that there exist in total five unique pairs of
characteristic polarization states for the symmetric coher-
ent scattering matrix [S(A,B)] of which two pairs, corre-
sponding to the cross-polarization (x-pol) null and
co-polarization (co-99pol) maxima, are identical; whereas
the x-pol max and x-pol saddle point pairs are distinct
(Boerner, Xi, 1990-92). These three pairs of orthogonal
characteristic polarization states are also mutually at right
angles to one another on the polarization sphere. The fifth
pair, the (in general) non-orthogonal co-pol null pair, lies
in the plane spanned by the co-pol max, or equivalently
the x-pol null, and the x-pol max pairs which determine
the ‘target characteristic plane (circle) of Kennaugh’(Ken-
naugh, 1992-81; Boerner, Xi, 1990-92; Boerner, Yan, Xi,
Yamaguchi, 1992) and the angle between the co-polar
nulls is bisected by the line joining the two co-pol maxs;
and together with the orthogonal x-pol saddlepoint pair,
being at right angles to this plane, they re-establish Huy-
nen’s ‘polarization fork’ concept (Huynen, 1965-1978,
Huynen, McNulty, Hanson, 1975, Huynen, 1992-90;
Boerner, Xi, 1990-92; Boerner, Yan, Xi, Yamaguchi,
1992). The distinctly different optimization approaches
are compared by one illustrative example in which, be-
sides the ‘polarization forks’, also the co-pol and x-pol
power density plots (Agrawal, Boerner, 1989-90) and the
relative co/cross-polarization phase (polarimetric correla-
tion coefficient) plots (Agrawal, Boerner, 1989-90;
Boerner, Yan, Xi, Yamaguchi, 1992) are presented.
More approaches still may be required to completely
resolve all unanswered questions even for the coherent
case, for example, such as those recently presented by
McCormick in [18] for applications to radar meteorology;
and so also a more rigorous group-theoretic approach of
optimizing the Sinclair, covariance and Mueller matrices
expanded in terms of Lie (SU(2),SU(3),SU(4/2)) groups
associated with the Pauli spin matrices as pursued
vigorously by Cloude (Cloude, 1986-90-88).

Next to determining the eigenvalue and optimization
problems for the isolated matrices [S],[G],[Z] and [M] -
equally important - the exact and correct expressions for
the enhancement of the ‘optimal contrast between two

classes of scatterers or scatterer ensembles must be deter-
mined as was first considered by Soviet radar
polarimetrists (see (Boerner, 1992), and still requires ex-
tensive investigations for completion for either the coher-
ent, partially polarized or partially coherent cases.
Whereas, a unique optimization method for the general
partially coherent case still does not exist, either for the
matrices or the associated contrast enhancement coeffi-
cients, considerable progress was made in determining an
optimization approach for the partially polarized case
(Yan, Boerner, 1991, Boerner, Yan, Xi, 1992; (Boerner,
1985; Boerner, Yan, Xi, Yamaguchi, 1992; Kostinski,
James, Boerner, 1988) for which it is assumed that the
wave incident on a stochastic scatterer is completely
polarized. Also, it is shown in (Boerner, Liu, Zhang, 1992;
Cloude, 1986-92-90-91-88) that there exist ‘physical real-
izability’ conditions to which the elements of the 4x4
Mueller matrices are subjected in order to identify er-
roneous measurement results such as of the degree of
polarization of the scattered wave to be greater than unity
(Cloude, 1986-92-90-91-88), etc. These and similar physi-
cal realizability (Fry, Kattawar, 1981; Hovenier, van de
Hulst, C.V.M., 1986) conditions apply, in general, also in
the partially polarized case requiring a four-dimensional
polarization sphere treatment (Czy, 1992-91; Zhivotov-
skiy, 1992-88-89) together with a SU(4/2) group-theoretic
treatment (Cloude, 1986-92-90-91-88) which will be con-
sidered in another paper (Boerner, Liu, Zhang, 1992).
This paper concludes by identifying useful applications of
these basic principles of radar polarimetry to practical
problems in ultrawideband polarimetric impulse radar tar-
get imaging (Boerner, Liu, Zhang, Naik, 1992); to high
resolution air/space-borne POL-SAR imaging (Boerner,
1987; Walther, Segal, Boerner, 1992); and in polarimetric
matched filtering (Kostinski, James, Boerner, 1988;
Walther, Segal, Boerner, 1992).

1. FORMULATION OF THE SCATTERING
MATRICES

A plane electromagnetic wave (H,V) can be expressed
(Yan, Boerner, 1991, Boemer, Yan, Xi, 1992; Boerner,
Yan, Xi, Yamaguchi, 1992) in the orthogonal polarization
basis (H,V) as (Fig.1)

E(HV) =A (hiy + pav hw, . b patio (1a)

The complex polarization transformation ratio pgy is
given by

prv = puv | expjduy = | Ev/Ep | expj (8y - dp) =
= tanoyv expjopy = (tand + jtant)/(1 - jtandtant) (1b)

where oyy and 8py can be expressed in terms of the tilt
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and ellipticity angles (¢,t) of Fig. 1 as Boerner, Yan, Xi, 1992; Boerner, Yan, Xi, Yamaguchi,
cos2ayyy = cos2pcos2t and tandpyy = tan2t/sin2¢ so that  1992)

the orthogonality condition in any orthogonal polarization :

basis (A,B; B = A) satisfies the following orthogonality  pag - p,fjg =—1, with pig =- % (1c)
condition (Boerner, Xi, 1990; Yan, Boerner, 1991, p
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Fig. 1 - POLARIZATION STATE DESCRIPTORS: (a) Parametric presentation of the polarization ellipse ; (b) Representation of the
polarization ratio in the horizontal-vertical (H-V) basis ; (c) Representation of a polarization state on the Poincaré sphere with
correspondence of point on the complex polar plane, p', with point P (p's) on the polarization sphere.
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1.1 Sinclair (Jones) Matrix [S(HV)] and the Graves
Power Matrix [G(HV)]

The scattering matrix [S(HV)], normalized with respect to
range and antenna gain functions [33-37], can then be
expressed in terms of the incident (Ei(HV)) and scattered
(Es(H1V)) fields [8,17] by

F;(HV)=[S(HV)]E(HV),[S(HV)]=[SHHSH‘/:|

Svir Syv
(2a)

where for the reciprocal monostatic (symmetric matrix)
case Syv = Sva, which is being considered here only. The
power received at the antenna terminal is then given (Yan,
Boerner, 1991, Boerner, Yan, Xi, 1992) by

P=|Vl'=|ex [S]1ETf (2b)

with the terminal voltage [5] being expressed in terms of
the antenna height /75,8] as

=3
VR=ﬂTEt=ﬂ"[S]F}=aT[S]F};ae’=”gﬁ 20)

Kennaugh (Kennaugh, 1992) first showed that the scatter-
ing matrix [S], in general, is not symmetric and also not
Hermitian; thus, in order to determine the proper set of real
eigenvalues he first proposed to introduce a coherent
complex power density matrix. As is discussed in detail in
Chan (Chan, 1981), Graves (Graves, 1956) later on re-es-
tablished Kennaugh’s finding and introduced the normal-
ized energy density expression W(p) as:

W(p)=Es" E=([S1Er)" ([S1ET)=

=E/ ([ST'[S])Er=E7 | GEr (2d)

and the complex power density matrix was defined by
[G1=[S] [S] The Graves matrix [G] was then used in
(Kostinski, Boerner, 1986-87, Mieras) to develop the
‘three-stage optimization procedure’, summarized later
on.

1.2 Unitary Basis Transformation and Invariants
The 2x2 unitary basis transformation matrix [U] for trans-

forming from (HV) to (AB) becomes (Boerner, Yan, Xi,
1992; Boerner, Yan, Xi, Yamaguchi, 1992)

EHY)-[U]E" (AB) (30)
with

i Jwt
[U1=m;—pp~[fjp*em o ] Gb)

so that
[S'><AB)]=[U]T[S<Hm[U1=[§ﬁ§§‘.ﬁ;§}, (30)

satisfying the following transformation invariants
(Kostinski, Boerner, 1986-87, Mieras; Boerner, Xi, 1990-
92; Yan, Boerner, 1991, Boerner, Yan, Xi, 1992; Boerner,
Yan, Xi, Yamaguchi, 1992)

Span [ S'(AB=BA) | =|Saa [ +2|Sas [+ |88

=|Sun P +2|Suv P +|Sw  (3d)
| Det [ S' (AB = BA) || =| 844 S'55 - (S'a)° | =
= | Sum Syv - (Siv)*| . (3e)

1.3 Covariance Feature Vector and Covariance Matrix
for Symmetric Case

Utilizing these invariants (3d) and (3e), first established
applied in radar polarimetry in [3d], the concept of the
polarimetric feature vector 7 and corresponding
polarimetric covariance matrix [ X ] may be introduced
(Boerner, Liu, Zhang, 1992; Tragl, 1992). At each instan-
taneous state of time any stochastic target is completely
described by a corresponding scattering matrix [S’(AB)]
or equivalently by a polarimetric feature vector T (AB).
For the symmetric matrix case (AB = BA), a three-dimen-
sional covariance feature vector (Boerner, Liu, Zhang,
1992; Tragl, 1992) is introduced

T (AB=AB) = (S'4a V2 S'ap S'p8)", (4a)

satisfying the encrgy conservation (power density) invar-
iance under a unitary basis transformation

| DI =Span[SAB=BA) | =|Sas | +2|Sas|* +| 55",
(4b)

Note that, in the literature formulations neglecting the
multiplicative factor V2 exist (Swartz, Yueh, Kong,
Novak, Shin, 1988; Novak, Sechtin, Cardullo, 1987,
Novak, Burl, Chaney, Owirka, 1990, Novak 1992) which
are erroneous, because those formulations violate fun-
damental energy and minimum phase conservation prin-
ciples, as was repeatedly stated by the author, and this
important point was reinforced recently also by Cloude
(Cloude, 1986). The corresponding, correctly defined
polarimetric covariance matrices, [£(AB)] and [E(HV)],
for the symmetric case, in the (AB) and (HV) bases,
respectively, are then defined for the instantaneous state
(Boerner, Liu, Zhang, 1992; Tragl, 1992), respectively by
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[Z(AB)] =2 (AB) T(AB)" =
| S'aa | V2 S'a0S'a8" S'an S'ss’
= | V2 S'4pSan’ 2|Sasl* V2 S'ap S'ps’

S'sp S'an" V2 S'spS'an” | S'ss[*
(40)
and similarly we can define
[ZHWV]=FHWV T HY) =
| St [ V2 Sur Suv' Suu Sw'
= | V2 SuvSur 2| Sav[ V2 Suv Swv'
Svv Sur' VZ SywSuv' | Sw
(4d)

satisfying the transformation (with * denoting the Her-
mitian conjugate)

TAB)=[Y]THV), [ZAB]=[Y]I[ZHW][Y]

(4e)

with [ Y (p) 1[Y (p) " = [/ ]and | Det {[ Y (p)] || = 1 and
the explicit expression is given as (Boerner, Liu, Zhang,
1992; Tragl, 1990; Tragl, LGneburg, Schroth, Ziegler;
LGneburg, Ziegler, Tragl, Schroth, 1991).

1

[(Y(P) ="+
(1+pp)
e 27y Nol pe 2jp; p2 e 27y
_\/fp* o) (Wi +w4) (1 = pp*) PRALEA \/jp el +w)
p*2 ¢ 20 —VZ p* e Y o Zbs
4
1.4 The Stokes Vector

According to (Boerner, Yan, Xi, Yamaguchi, 1992), the
Stokes vector g for a partially polarized wave may be
defined as the sum of the completely polarized ( g, ) and
the unpolarized ( g, ) components expressed in terms of
the coherency matrix [J(HV)] or the coherency vector
j(HV) (Kostinski, James, Boerner, 1988), (Azzam, Bash-
ara, 1977; Ishimaru, 1991)

[J]=[<ff*>]= <EIIEiJ><EHE:/> _ JuuJuv ;
<EyvEp><EvEy> Jva Jvv
J—)T=[JHHJHVJVH-/VV],
. 1 07 (5a)
Lo>=1 g L) dt
<...>=lim 2Tf_r( ) )

8o 480 (1-9)go
- = = g1 _ &1 0 _
E=8q%8u= o | 22 * 0 -
g3 &3 0
(5b)
Juu +Jvy 10 9 1
Jur —Jvv - 10 0 -1
JHV+JVH _[A]J’[A]_ 01 1 0
Wav = jJvu 0j -j 0

The degree of polarization q, later on required for deriving
a more useful expression in terms of the corrected covar-
lance matrix expressions, is given by

8o Unn +JIw)
0sqgs1,Juv=Jvn

Vei+gi+g3 _ \/ | Adet[J]

b

(50)
and the complex degree of coherency u by

j Juv
u=|u]e’g=m,05|u|sqsl,

(A-¢) _ 4amdw
(1-|uP)  Una+Iw) (5d)

For the coherent case | w|=1 and g = 1, with
go=gi+gi+ g3 expressed in the 1gv (orv, dprv) formula-
tion, presenting a fixed point on the polarization sphere,
(Fig. 1), the Stokes vector becomes

8o |I‘3hf|22+|EV|22
Pa-n)-|® | - | B |
82 2 |En| |Evicos¢
8 2 |Enl [Ev| sing
1 1
2 [cos2tcos2d | .2 cos(2auv)
cos2tsin2¢d | sin(2osv) cos (dgv)

sin2t sin(2ogy) sin (dgv)

(S¢)

1.5 The Mueller Matrices [M], [Mc], [Mx], and [Mmn]

For the partially coherent case the scattered (g; ) and the
incident (g;) fields for forward (backward) scattering are
related by the real Mueller (Kennaugh) matrix [M], which
for the ‘degenerate coherent case’ (Yan, Boerner, 1991,
Boerner, Yan, Xi, 1992) can be expressed in terms of the
scattering matrix [S] by

g=[M]g,[M]1=[AAB)]([S@AB)]®[SAB)]")

[A@4B)T",
(62)
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where ® denotes (tensorial) Kronecker matrix multiplica-
tion and the Kronecker expansion matrix [A(AB)] differs
for different bases (AB) (Boerner, Yan, Xi, 1992); and for
the (HV) basis it is given by (5a).

The corresponding received power expression is then
given (Yan, Boerner, 1991, Boerner, Yan, Xi, 1992;
Boerner, Yan, Xi, Yamaguchi, 1992) by

P=25T(M,)E (6b)

which, as was shown in (Yan, Boerner, 1991, Boerner,
Yan, Xi, 1992; Boerner, Yan, Xi, Yamaguchi, 1992), can
be reexpressed for the co-polarized (co-pol: ¢) and cross-
polarized (cross-pol: x) channels

as

Pe= |7 [S1ErP =5 87 (M1 &, (6¢)

with
[(Mc]=([ATHY ([SI®[ST)[A] ' =[C][M]
and

Py | [S1E: = 87 (M1 & (69

with
00 0 1
_ 1T 0 -1 0 0 *
[Mx]=([A] ") 0 0 -1 ol (IS1®LST)
10 00 .
[AT'=[X][M],
where
100 0 1.0 0 0
010 0 0 -1 0 0
[C1=lo 01 0| El=lo 0 -1 0
000 -1 0 0 0 1

In case the receiver antenna polarization state Az is
matched to the incoming scattered wave, then

ReESABI . Pa=y 87 [(Ma15 (69)
with
1000
1 ~1j0000
0000

which completes the introduction of the pertinent scatter-
ing matrices (Yan, Boerner, 1991, Boerner, Yan, Xi, 1992;
Boerner, Yan, Xi, Yamaguchi, 1992) used in radar
polarimetry.

1.6 Partially polarized case

For the partially coherent and also for the partially
polarized cases, the following optimization criteria result
for the scattered energy density arriving at the receiver
according to (5a), which may described in terms of four
categories [25,8,17]:

gs0 Total energy density in the scattered wave
before it reaches the receiver;(7a)
Completely polarized part of the intensity;
i.e., the adjustable intensity because one
may adjust the polarization state of the re-
ceiver to ensure polarization matching;(7b)
Noise of the unpolarized part: regardless of
the receiver polarization state, one half of
the unpolarized part, i.e., gso(1-q)/2 is al-
ways accepted.(7c)

Maximum of the total receptable intensity
{agso} + {(1-q)gso/2} = {(1+q)gso/2}, ice.,
the sum of the matched polarized part is
mismatched (canceled with proper receiver
tuning), the total received power is minimal
and equal half the unpolarized power, i.e.

(1-q)gs0/2.(7d)

qgso

(1-q)gso

(1+q)gso/2

We note, here that Cloude established another set of the
optimization criteria based on the target matrix decom-
position (Cloude, 1988) which is assessed later on as the
two methods must provide identical results if valid.

2. THE PROPERTIES OF THE NORMALIZED
COVARIANCE MATRIX EXPRESSION IN
TERMS OF THE CO/CROSS-POLAR POWER
DENSITY AND OF THE RELATIVE PHASE
CORRELATION COEFFICIENTS

2.1 The Polarimetric Covariance Matrix for the Stoch-
astic Case

The recent availability of advanced coherent dual polari-
zation radar systems, allowing the decomposition of the
received wave into two orthogenal complex components
(co-polar and cross-polar transceiver channels), and
highly simplified polarimetric ensemble averaging for
<Sj Ske >, facilitates the introduction of the polarimetric
feature vector & of (12b) for interpreting the ensemble
(time)-averaged scattering behavior of reciprocal random
targets (S'ap = §'p4). Utilizing the scattering matrix invar-
iances of (3d/e), the polarimetric feature vector T was
introduced subject to the normality condition (4b), permit-
ting the formulation of the covariance matrix [ £ ] accord-
ing to (5a/b) also for the stochastic symmetric case with
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< ... >denoting either appropriate ensemble or time aver-
aging (see eq.(5b)) of a stochastic variable (Boerner, Liu,
Zhang, 1992; Tragl, 1992)

[Z](AB)]=
<|S8'a4 |2 > V2 <8uaSus > <844S5 >

= \/Z<S'ABS'AA* > 2< | S'AB I2 > \/7<S’ABS’BB* >

2 <S'gpSas" >

<S58 S'as" > <|Sss|*>

(82)

and [ 2] (HV)] -

<|Suul> VZ<SuuSuv'> <SguSw' >
=| V2 <SuvSur > 2<|Savf> V2 <SuySw' >
V2 <SvwSav >

<SyvSuH > <|Sw >

(8b)

These polarimetric covariance matrices are directly re-
lated to the statistical properties of the scattering matrix
elements and its formulation is consistent with the Stokes
reflection matrix decomposition into its co-polar matrix
[ Mc ] and cross-polar matrix [ Mx ] as introduced in (Yan,
Boerner, 1991; Boerner, Yan, Xi, 1992) and defined in
(6d). Following the approach of (Agrawal, Boerner, 1989-
92) and (Tragl, 1992-90, Tragl, Lcneburg, Schroth, Zie-
gler, 1991) of utilizing the reduced transformation matrix
(Davidovitz, Boerner, 1986-83, Agrawal, Boerner, 1989-
92; Tragl, 1992-90, Tragl, Lcneburg, Schroth, Ziegler,
1991) with ¢1 =0 and y4 =0, for the linear (HV) basis,
eq.(4e) may be reformulated as

TUB)=T(p)=[Y(p)]THV), (8¢)
and
[ZAUB)]=[2(p)]=<T ()T (p)>=
=[Y()]<THEHVWT HYV)>[Y ()] (8d)
with

q 1 VZp 2.
[Y()]=——— |-V2p " (1-pp")VZp |, (8e)

(1+pp" 02 _vZpt 1

where [ Y (p) ] [Y () ] =[/] and Det [ [Y (p) ]} = 1.
With the introduction of the above matrices and power
density expressions, the proper covariance matrix
[ Z (AB) ] can be reexpressed (Boerner, Liu, Zhang, 1992)
in terms of the co/cross-polar channel power expression,
P, (p) and Py (p), for the case of transmitting polarization
state A and receiving B=A ; whereas for reversed (or-
thogonal) order of transmitting B and receiving A =B
the corresponding orthogonal expressions are denoted by
P. (p), Px (p) and similarly the off-diagonal relative phase
co/cross polar channel correlation expressions R. (p) and
R (p) become Rc (p) and Ry (p), where

Pc(p) V2 Rx(p) Rc(p)
[Z(p)]=| V2 Rx(p)" 2Px(p) V2 Rx(p)"
Re(p)” VZRx(p) P&(p)

and since p p* = - 1, we find with equations (4c - 4f)

PE(p) - "

S Bvarte) Eire(p)

(= & ﬁ X; p _ _B* \/Z_RX (p)* ’
Rc(p)” -5V2R - P
P’ p V2RO T b )
| (9b)

satisfying the following orthogonality relations
Pc(-1/p")=Pc(p), |Rx(-1/p")|=|Ri(P)| (%)
and symmetry relations
Px(-1/p)=Px(p), |Rc(-1/p)|=|Rc(p)|, (9d)

so that the stochasticity coefficients, defined in (5¢) and
(5d), may be reformulated in terms of the normalized
covariance power density expression later on required for
determining ‘optimal contrast polarimetric enhancement
coefficients’ (opcec),

Rx (p)

uap (p) = VP (0) Px(p) (%)
and

V(Pc(p)-Px(p)) +4[Rx () [
945 (p) = (P (9) + Px (p) 9
O<|upas(p)|squs(p)=1. (9g)

2.2 Eigenvalues and Eigenvectors of the Polarimetric
Covariance Matrix

The (corrected) polarimetric covariance matrix [ 2] is
Hermitian and positive semi-definite and thus possesses
three real, non-negative eigenvalues 0 sv;<vy<vj
corresponding to a given matrix [ £ ] or equivalently [M],
ie,vi([Z],i=123), where it can be shown (Boerner,
Liu, Zhang, 1992; Tragl, 1992-90, Tragl, LGeneburg,
Schroth, Ziegler, 1991) that

0 =v1 = min, Pc (p) < Pc (HV) <max, Pe (p) <3
<|FEHY)|F; (10a)
and similar inequalities hold for P, and P.. A succinct
interpretation of the target invariant eigenvalues

-v;(1,2,3) of the covariance matrix of random target
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polarimetric backscattering features is given in (Boerner,
Liu, Zhang, 1992; Tragl, 1992-90, Tragl, LGeneburg,
Schroth, Ziegler, 1991), showing that the smallest eigen-
value v; indicates the degree of randomness (Boerner, Liu,
Zhang, 1992).

For a deterministic target, with the covariance matrix
defined by (4d) as [ = (HV) | = T (HV) & + (HV), one ob-
tains by involving a spectral theorem of matrix algebra
(Horn, Johnson, 1985) that vi=v> =0 and v3= || (HV)|]*
for which true null polarization states pen1,2 exist (Tragl,
1992-90, Tragl, LGneburg, Schroth, Ziegler, 1991). The
eigenvalue difference A v = (Vmax — Vmin) = (V3 — v1) of ex-
tremal covariance matrix eigenvalues determines the
range in which the mean power return
P.(p) and 2Py (p) can be varied by polarimetric trans-
ceiver antenna adjustments also in consistency with the
fundamental optimization criteria of (7a - 7d), where in
particular (Boerner, 1981-80; Boerner, Yan, Xi, Yamagu-
chi, 1992; Boerner, Liu, Zhang, Naik, 1992; Walther,
Segal, Boerner, 1992)

Trace[Z(AB)]=Trace[2(HV)]=Trace(<§§+>)
=<Trace(§§)§+)>=<||§||2>=<Span[S]>
=<|SuaP>+2<|Su[P>+<|SBs[ > (10b)
=<|Sun>+2<|Suv|*>+<|Sw[ >

=vi([Z])+Vv2([Z])+Vv3([Z])=invariant .

In addition, the span of the covariance matrix [ X ] is also
an invariant (Boerner, Liu, Zhang, 1992; Tragl, 1992-90,
Tragl, LGneberg, Schroth, Ziegler, 1991; Boerner,
Walther, Segal, 1992), where

3
Span[2]= E V¢ = invariant
i=1

(10c)

and so is the ratio of the span versus the trace of the
covariance matrix [ X | an invariant such that the ‘covar-
iance matrix invariance ratio (cmir)’ may be defined as

\/ vi
VSpan[X] VSpan[Z] i;
Trace[Z] Span[S] 3

S v
i=1

cmir=

(10d)

In POL-RAD/SAR signal and image processing ‘cmir’
plays a significant role specifically as a measure (stand-
ard) for speckle reduction (Walther, Segal, Boerner, 1992;
Swartz, Yueh, Kong, Novak, Shin, 1988). We note that
similar expressions were derived by Novak et al. (Swartz,

=invariant=<1 .

Yueh, Kong, Novak, Shin, 1988) utilizing a polarimetri-
cally incorrect formulation based on decision theoretic
approaches, as was also clearly identified recently by
Cloude (Cloude, 1991-88). In addition, another set of
powerful ‘covarience matrix’ and Mueller matrix realiza-
tion conditions can be derived (Cloude, 1986-92-90-91-
88; Hovenier, van de Hulst, C.V.M., 1986) and will play
a key role in developing rigorous polarimetric radar cali-
bration standards (Ulaby, Moore, Fung, 1986; Wiesbeck,
Khny, 1991, Riegger, Wiesbeck, Khny, 1992).

3. OPTIMAL OR CHARACTERISTIC POLARIZA-
TION STATES FOR THE COHERENT CASE

The Optimal Polarization State problem is to find polari-
zation states transmitted and received, for a target of
known scattering matrix [S] such that the voltage
developed across the receiving antenna terminals is max-
imized (or minimized) (Boerner, Yan, Xi, Yamaguchi,
1992); or equivalently the power densities.

3.1 The Three-Step Optimization Approach for Graves
Power Matrix [G]

This method enables one to treat the symmetric, asym-
metric, monostatic and bistatic cases in an identical man-
ner (Kostinski, Boerner, 1986-87, Mieras) but it is limited
to the determination of the main polarization states for the
matched antenna case only (Yan, Boerner, 1991, Boerner,
Yan, Xi, 1992; Boerner, Yan, Xi, Yamaguchi, 1992).

Step 1
The total energy density W in the scattered wave is given
according to (2d) by E’s" Es, where

W=Es'Es=([S1Er) [S1Er=E7 [S] [S]Er=

Er'[G1Er (11a)
with the following eigenvalue problem:
[ G 1Erorr=AEropr (11b)
of solution
}\1,2=%(Trace[G]1\/Tracel[G]—4Det[G] )
(11c)
where
M+MN=Trace[ G]=Span[S]=
=|SaalP+[Sap P +|Ssa F +|S55
(11d)

=|San [ +|Sav [ +| Sva |+ | Swl = S [P + | Ser [

+| Skt !2 + | Srr | = invariant
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MA=Det[G]=Det[S])(Det[S]) =
(11e)
=(S"44 S'8B — S'aB S'BA) (S'An S'BB — S'AB S'BA) = invariant ,

from which “Kennaugh’s Polarimetric Excess: o;” or
the Effective Polarimetric Radar Cross-section (eprc)’
(Kennaugh, 1981), useful for geometrical power manipu-
lations on the Poincaré) sphere (Boerner, 1992; Czy,
1992-91; Zhivotovskiy, 1992-89), can be defined as

or=(Span[S]+2|Det[S]]) . (11f)

which was used extensively by Czyzin his alternate formu-
lation of the fundamental polarimetric radar problem, also
by Zhivotovsky (Zhivotovskiy, 1992-89), and in
Wanielik’s Lorentz transformation models [44] for the
asymmetric bistatic scattering matrix cases (Davidovitz,
Boerner, 1986-83; Cloude, 1986-92-90-91-88; Czy, 1992-
91; Zhivotovskiy, 1992-89; Cho, 1990). In fact, the correct
treatment of the asymmetric matrix optimization proce-
dures require the rigorous introduction of ‘Kennaugh’s
Polarimetric Excess’ (Kennaugh, 1981) as was also shown
in (Davidovitz, Boerner, 1983).

Step 2
Compute this scattered wave by using the known scatter-
ing matrix [S] and E7.0pr from (11)

Esorr=[S ) Eopr (11g)
Step 3
e Esorr ([S]1Erorr) (11h)

P | Esoprll ~ II1S1Ezopr|l

This polarization match (11b) completes the three-step
optimization process for the Graves power matrix ap-
proach (Boerner, Yan, Xi, Yamaguchi, 1992) and it pro-
vides exactly the same result as is obtained from the
matched degenerate Muller matrix” optimization of (6f).

3.2 The Critical Point or Basis Transformation Method
for the Optimization of [S(AB)] Using the Generalized
Transformation Matrix Formulation [6]

3.2.1 Generalized p - Transformation

With this method all existing characteristic states can be
determined for which the radar receiver obtains maxi-
mum/minimum power backscattered from the targets and
for which optimal polarization phase (8) instabilities
(cross-polar saddlepoint extrema) may occur (Fig.2a). In

our case, the power expression (6b) can be written equiv-
alently as

P=|VP=|Ed [S1er’=|E ¥ [S1ez], (12a)

where ' represents reference to any new basis (AB) which
is obtained after unitary T - congruence transformation
from the original basis (HV) (Kostinski, Boerner, 1986-
87, Mieras)

, S'4a S'aB r | Suu Suv
[ (48] =[S'BA S’BB} =LYl [SVH SVV] [UT, (120)
where Spy = Svg and S’ag = S'pa for the monostatic scatter-
ing case (Yamaguchi, Sasagawa, Sengoku, Abe, Boerner
Yan, Xi, 1990), considered here only.

The scattering matrix is diagonalized by Takagi’s theorem
(Horn, Johnson, 1985) as is shown in greater detail in
(Boerner, Xi, 1990-92):

, [Saa 0] MO
(s am=[ 53 g, | =[5 |-t (120)
M =544 (p) = (1 +prpi)
(SHH+ 2p1 SHv + p% Syv)e 2 _ | M | 6‘j¢1 (12d)
2 =S'sp (p1y=(1+ p1pi)”"
(p1” Sur = 201 Sy + Swv ) e TV = | Ay | ¢ (12¢)

The functions of the power returned to the co-pol and

cross-pol channels of the receiver are determined from the

bilinear form to become:

(i) For the function of the power returned to the cross-pol
channel (1?} =E}) expressed in terms of the antenna
height i”(Boerner, Xi, 1990-92)

— —> 1
Px= Vx2= hrT S h /2=
N o A L
(IMmPp e  -MmAp - MMp?+ | 2fp p")

(13a)
where p’ is the polarization ratio of the transceiver in
the new basis. The critical points are some p's for
which the first derivative of P, with respect to p' and

p'" vanishes. These critical points, found in function

Py are:
Vs

’x =0 ’ « }\- )‘4* i(2v

S: n;_w pxml,2=il[)\1}\ ) =iej(2 )

xn2 = 12

 (am)
p’xsl,2=i 1 2 =t€j2v
M A

(13b)

(ii) For the function of the power returned to the co-pol

channel (Ezx =E7)
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1
Pc= V2= h_)lT S h‘>12=——_
Vel = BT LS e
( l M |2+ i }\3 p,*z + )\-I %o p/2+ | }\'2 12 pr2 me)
(14a)
the critical points are determined from
p’cml = p’ml =0 s p’cm2 = p,an =© ,
(14b/c)
]/2
M I M | j(2v+x/2)
=% -—|==x[—7| e .
o ) B
(144d)

Note that the following conditions are satisfied

p/xnl pI;nZ =-1, p,xml p';mZ= -1, p,xsl p’xfﬁ =-1
(14e/f/g)

that means that not only p'xs1 and p'wz but also
p'xm1 P'xmz are ‘orthogonal’ and so are p'y; and p'ys2
(Boerner, Xi, 1990-92).

X-POL Null and CO-POL Maximum States

It can be shown for the monostatic reciprocal case that the
X-POL Nulls and the CO-POL Maxima are identical
(Boerner, Xi, 1990; Xi, Boerner, 1992) as shown in
(14e,f). The power returns to the cross/co-pol channels are
(Boerner, Xi, 1990-92)

Pxnl (p,xnl) = P2 (p,xn2) =0 5 Pcal (p’cml) = | 7\'1 [2 5
Poor (p'em2) = [ A2 |2 . (15a)
CO-POL Nulls, X-POL Maxima and X-POL Saddles
The p'xmi1,2 of (13) are the cross-pol maxima and p'y 2 of
(13) the cross-pol saddles. The corresponding power returns
to the receiver of the cross/co-pol channels are (Fig.2a):

Px(pxm1,2)=%(|)\ll+l)"2])2

1
Pc(pxml,2)=z(|}"1|_')"2|)2

(15b)
1

Pe(pwi2) =7 (1M =2 ])

, 1
Pc(pm,z)=z(|7»1|+|M|)2

The p'ecn12 of (15) are the co-pol nulls which may be
considered to be ‘pseudo-extrema’ (Mieras, 1983, Mieras,
Barnes, Vachula, Bucknam, Boerner, 1982), because the
power returned to the co-pol channel becomes zero, (Ken-

naugh, 1992-81; Agrawal, Boerner, 1989-92; Boerner, Xi,
1990-92; Yan, Boerner, 1991, Boerner, Yan, Xi, 1992),
i.e.,

Pc (p’cnl,Z) =0 (150)

3.2.2 The Polarization Fork [6,7,17]

In order to determine the polarization fork (Boerner, Xi,
1990-92), use is made of the polarization ratio p formula-
tion of (1b), shown in [Fig.1c], relating point (p’s) on the
complex plane with P (p’s) on the Poincaré) sphere
(Boerner, Xi, 1990-92). According to (1b), each point p’
of the complex plane can be connected to the Zenith (LC)
of the sphere, resting tangent to the complex plane in its
origin O at the Nadir (RC), by a straight line that intersects
the sphere at one point P (p’s), where the Nadir (RC)
corresponds to the origin (O) of the plane, the Zenith (z)
to the circle at “infinity («)”, and the equator to the unit
circle, representing linear polarization states (Boerner, Xi,
1990-92) as illustrated in Fig. 2a. According to the expres-
sion of the cross-pol max and cross-pol saddles, they all
lie on the unit circle and are the end points of two or-
thogonal diameters. So their corresponding points lie on
the equator of the sphere as $1,5,,T1 and T with S; S> and
T1 T, perpendicular (at right angles on the polarization
sphere) to each other. The co-pol nulls of p's.12 lie on the
same straight line with p’gwm1,2 on the plane and symmetric
about the origin O, so their corresponding points on the
sphere C; and C; lie on the same great circle with
X1,X2,51 and S> symmetric about the diameter X1 X2, also
denoted as ‘KennaughGs Characteristic Circle
(Plane)’(Fig.2b).

3.2.3 Huynen’s Presentation [2,7]

Using Huynen’s geometric parameters, the properties of
the scattering matrix [S], can be expressed according to
[S’(AB)] = [U]"[S][U], as (Boemer, Xi, 1990-92)

* 1 O
[S1=1U" (G0 Jexp(v [LT )m| o
exp(V[LT) [U (p1) 1" exp (&) (16a)
1
(4 BAG - pP1 (¢ ms Tm) e = s
p; (q) m’.tm)e‘jll’l e-jw.c

which is, as shown in (Boerner, Xi, 1990-92) and il-
lustrated in Fig. 2c, the same as Huynen’s [H] given by
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1 0 1% r
R I R R
(16¢)
and [U(, Ty, V) |=e VU= K oIl (16d)

where j[J], j[K] and j[L] arc related to the Pauli spin
matrices [ p; | with i = 1,2,3; and [I] is the identity matrix

([I]=]po]) defined in Section 7. Huynen’s parameters
[2] m, ¢pu,V,Y,0m and oy are defined in Fig. 2¢c. The identity
of (16b) with (16d) establishes an important new matrix
transformation identity on the polarization sphere, in that
the various sets of optimal polarization states can be
straight-forwardly related to one another as was first
derived in (Boerner, Xi, 1990).

Xo Pxn2=Pcm2==

Poincaré Sphere

\
2 ) ¢
\
S — S
2 / 1 .
Pxs2
T - .
7
7
Pen2 (. 7 Pent
Xy Pynt =Pcemy =0 P'xm1 Im {p}
(a) P'xst
Complex Plane
Re {p'}
19
o <
i v N\
i L !
/, - T-‘ =~
5 .90 x(A)
1 - - g%ﬂ ’ ~
TS~ lgonl \\
135° g 7 ~L, N ouse
4] /’2}’ )/ =5, (1)
(8> > y 1350
.B \ (:? £
\ /
/
H //}LTZ
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Fig. 2 - POLARIZATION FORK: (a) Correspondence of pxn1,2' = pem1,2’ = Pum1,2 = Pxs1,2 and pen12 on the complex plane with
X12,T1,2,,512, and Csupl,2, respectively , on the Poincaré sphere ; (b) Representation of the characteristic polarization states on the
Poincaré sphere (X1, cross-pol null and co-pol max ; X», cross-pol null and co-pol extremum ; C1, co-pol nulls ; S1, cross-pol max;
T1,2, cross-pol saddle points; v, target characteristic angle) presented in the new basis (AB) ; (c) Standardized polarization fork of
Huynen with definition of Huynen’s geometrical parameters presented in the old basis . ¢ - target orientation or tilt angle; v - target
skip angle; T - target ellipticity angle; v - target characteristic angle; p - tan o exp(jd), polarization ratio.
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3.3 Optimization Approach Using Stokes Vector and
Mueller Matrix Formalism: [M],[M.],[M,] and
[(Mn]

Using the Lagrange multipliers method applied to the
received power expressed in terms of the Stokes reflection
matrices [ M.],[M;] and [ M,, ] of (6d),(6¢) and (61),
respectively; this method, derived in (Yan, Boerner, 1991,
Boerner, Yan, Xi, 1992), enables one to obtain charac-
teristic polarization states for the symmetric (reciprocal),
a symmetric (nonreciprocal), monostatic and bistatic
cases. The components of g7 satisfy the following con-
straint equation

O (gri,gm,gm)=Veh +gn+g -1=0

for which the Lagrangian multipliers method for determin-
ing the extrema of the power P (g1 , 872 , gr3 results in

(17a)

0P 9® _
ogri  0grn

0, (i=123). (17b)
The corresponding optimal polarization states, corre-
sponding to the “degenerated” Mueller matrix [ M ], the
Stokes reflection, (Kennaugh) matrices [ M, ], [ M ] and
to [ M,, |, are obtained by solving the corresponding nor-
malized power expressions P, , Py and P,, of (6¢), (6d) and
(6e), respectively in (Yan, Boerner, 1991, Boerner, Yan,
Xi, 1992; Yamaguchi, Sasagawa, Sengoku, Abe, Boerner,
Yan, Xi, 1990; Boerner, Liu, Zhang, 1992). It should be
noted here that these Mueller matrix optimization ap-
proaches implementing the Lagrange multipliers method
in radar polarimetry were first initiated at UIC-EECS/CSL
(Yan, Boerner, 1991, Boerner, Yan, Xi, 1992; Kostinski,
James, Boerner, 1988; Tanaka, Boerner, 1992) and inde-
pendently developed using alternate formulations also by
Van Zyl (van Zyl, 1986, van Zyl, Papas, Elachi, 1987,
Zebker, van Zyl, 1991) and others (Cloude, 1986-92-90-
91-88).

3.4 Optimization Approach for the Covariance Matrix
Method: [Z(HV =VH) ]

The optimal polarization states associated with the covar-
iance matrix [ 2 (HV) ], of eq. (4), can be obtained by
decomposing the 3x3 unitary transformation matrix
[Y(p)]" of eq. (4e) into its two-parameter complex
column normalized vectors z; (p) according to (Boerner,
Liu, Zhang, 1992; Tragl, 1992-90, Tragl, LGneburg,
Schroth, Ziegler, 1991), as

[Y(p) T =[z(p)z (p) 23 (p) ]

with

(18a)

d 1 i -V2p
ZP)=———|V2p" |, 2()="——|1-|p[|,
+pp p*? +pp V2 p*
1 o’
z3(p) = S =-V2p |
1+pp 1

where the z (p) are associated with the mean power ex-
pressions for the co-polar and cross-polar channels ac-
cording to (9) as:

Pe(p) =21 (p)" [ (HV) ] (p) (18b)
Pe(p)=(1/2)Z(p)" [Z(p) 1 22 (p) (18¢)
P(p) =2 (p) [Z(p) ]2 (p) (18d)

The existence of extrema as it relates to the covariance
matrix power expressions (18b,c,d) is guaranteed by the
Weierstrass theorem (Tragl, 1992-90, Tragl, LGneburg,
Schroth, Ziegler, 1991) applied to the compactness of the
set of all possible optimal polarization states on the Poin-
caré) polarization sphere and the continuity of the power
expressions. The extremal values of the respective power
functions P. (p), P (p) and Py (p) can be determined by
equating the first derivatives with respect to p* to zero:
d{P(p,p")}/dp"=0.The solutions can be calculated by
regarding the power function to depend on the two inde-

pendent variables p and p*

aPC(p5p*)=

" ~Re(p,p")=0, (19a)

ap (1+pp)

dPp,p" 2 .
o) 2 el a0, (19)
ap (1+pp)

AP (p,p" 1 . .
(p*p)= —(R¥(p,p) -Re(p.p))=0.
ap (1+pp’) "

(19¢)

From equations (9) and (18), it follows that the copolar
power density optimum corresponds to a vanishing degree
of coherence pyp. In other words, if a copolar power
maximum (co-pol max) is transmitted, then the backscat-
tered orthogonal wave components are mutually incoher-
ent and (9f) reduces to

| Pe— Py

P+ P, (19d)

qaB (Pco - max) =
These three extremal conditions can be solved by standard
numerical techniques either directly in the complex plane
or by reducing the problem to that of the numerical solu-
tion of two coupled non-linear equations by the separation
of the real from the imaginary parts resulting in a truly
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tedious and cumbersome exercise. Instead, we are going
to employ a more elegant method, recently developed by
Liineburg et al. in (L.Gneburg, Ziegler, Tragl, Schroth,
1991) by introducing a set of unconstrained real vectors
v’which need to be determined separately for the co-polar
and cross-polar power optimization approaches of (18)
using a different formulation for the two channels (Yan,
Boerner, 1992-91, Boerner, Yan, Xi, 92). Another optimi-
zation approach in terms of the optimal target substructure
matrices derived from the target matrix decomposition is
presented in (Cloude, 1991) and its results need to be fused
with ours, i.e., proved to be identical

3.3.1 Cross-polar Power Py (p) Optimization

In the cross-polar power case, an unconstrained real vector
v(p) is derived from the complex vector z; (p) of (15) via
a p - independent linear unitary transformation matrix [Q]
such that

1-pp’

_> 1

Vip)=[Q1zlp)=""| 2Rep |
1 0vV20

[Q]=-=|-101 (20a)
V2 i 0

Due to the orthogonality relation pp” = - 1 according to
(1), the solution for p and for the orthogonal polarization

state p = (- 1/p") will provide v(p) and - v(p); i.e, vec-
tors differing in sign only.

Pr(p)=3 25 () [2 (V) 13 (0) =3 Vi) [Q] [ (HV)

Vip) [AEV])VIp)=  (20b)

N =

[QT Vip) =
=%v"f(p)m([A(HV)])T(p)

with the Hermitian alternate covariance matrix

[ A (HV) ] given by

A1 Az Ass

[AHEV)]=[Q][ZHWV][Q] =| Aa1 Az Ass | ,
Az1 A3z Asz

(20¢)
A =2<|Suv[ > Ao ={ < Sam Siv> = < Suv i > |
A13=—j{<SHVS;1H>+<SHVS?/V>};
A21={<SVVS;[V>_<S[‘IHS;1V>};

1 * *
A= [<|Sur >+< | Svv P> = < Sun Sty >=< Sy Stur> | ;

1. *
A23=E]{<ISHH|2>_<|SVVl2>+<SHHSVV>_

+ < Syv St > } ; Azl =j{<SHHS;1V>+ < Svv Shv > } ;
(20d)

A32=—%j{<|SHH|2>_<ISVV|2>+<SVVS;-IH>_
+ < Sun St > | ;
A33=%{<|SHHl2>+<|SVV|2>+<SHHS){/V>+
+<SVVS;1H>}
with
Trace ([A(HV)]) = Trace([Z(HV) ] ) = Span( < [S(HV) >)
(20e)

subject to the constraint (Boerner, Liu, Zhang, 1992;
Tragl, 1992-90-91)

vIy=1

(201)
fhe solutions are found from applying the standard
method | Det{[ A (HV)]}-v'[1]|=0, where the real
cigenvectors v can be associated with the solution
Stokes vectors g as

gi=(1+¥v:") and gi=(1-v), & g=0 (20g)

and g; denotes the orthogonal polarization state (anti-
podal on the Poincaré) sphere). The resulting solution is
identical to that obtained from optimizing P, (p) given by
(6d) using the Mueller matrix optimization method (Yan
Boerner, 1991, Boerner, Yan, Xi, 1992; Boerner, Yan Xi,
Yamaguchi, 1992).

3.3.2 Co-polar Power Optimization (Covariance Matrix
Approach)

Applying the -independent linear unitary transformation
matrix [Q] of (20) to the complex column z; (p), yields

[Q15(0) = /5 [F10) +i710)] (1)

with
x1p)= (2Rep ,Re*p —Im*p ~1,2Re pIm p)' /(1 +| p )
yip)=(=2Im p , - 2Rep Im p , Re’p — Im*p + 1)/ (1 + |p[)

so that the co-polar power function P, (p) becomes

Pp)=ZE ()" [2 (HV) Jallp)= 3 % () Re( [A (11V) 1 ()
(21b)

+377(0) Re( I G1V) 17 T(0)5 17 (0) Im( 1A (V) 1 7°(p)
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where

Im{[(AR)]}=-V2j{[AWEV)]-[AEHV)]}is real
and anti-symmetric (Tragl, 1992-90-91).

Introducing the auxiliary vector by = (bo; boz bos)’, where

1 2 2 |
bot =5 (<|Suu "> - <|Sw| >)=Tm{Axf, (21c)

boz=Re (< SuvSyv>+ < SunSuv > ) =Im{A31}
bo3=Im(<SHVS§/V>+<SHHS;1V>)=Im{A12}

it can be shown by using the geometrical vector product
(Tragl, 1992-90-91)

X (p)xbo=Tm ([ (HV)]}x (p)

that
Y Im{[A]}x=77 @XB) = (%3 - Bo=v"F (2le)

(21d)

since
V() =7(p) xX(p) = { (1 - pp™) 2Rep 2Ump | . (21f)

Introducing the real orthogonal transformation matrix
[ O] (p) ] with column vector X (p) , ¥ (p) and v_(p)

[0 ]1=[xE7E)], [01[0] =[], (22a)
it can be shown (Tragl, 1992-90-91) that
Trace ([0 (p)]"Re ([A(HV)])[O(p)]) =
=Trace(Re[A(HV)])

(22b)

=x "Re ([AHV))X+y "Re ([AEV) T+ v
Re([A(HV)])V

and that with

[BHY) ] % (Trace (Re ([A (HV)]) [I]-Re ([A(HV)])
(22¢)

another expression for P, (p) is obtained as

Pe(p)=v " (p) [BHV)[V(p)+b T (HV)V (p)  (22d)

which with g (p)= (1 =v  (p) )T (22¢)

is shown to be identical to the expressions obtained
directly for the co-polar Mueller matrix power expression
P (p) of (6¢). For details concerning optimization proce-
dures in the context to the covariance matrix optimization
approaches we refer to (Boerner, Liu, Zhang, 1992; Tragl,
1992-90-91). Following the same procedure of using the
Lagrangian multiplier method developed first in (Kostin-
ski, James, Boerner, 1988), it can be shown that the real
vector v (p), defined in (20) and satisfying (21g), which
extremizes the quadratic form for Pc (p) of (22d) are

solutions of the set of coupled non-linear equations in v~
and

(1B @) 1700) - p) | = -5 BHV) , o) 7o) =1 .
(221)

In conclusion, the optimizing solutions obtained via the
corrected polarimetric covariance matrix method for the
coherent case are identical to those obtained via the
‘Mueller Matrix’ (Yan, Boerner, 1991, Boerner, Yan, Xi,
1992) and the ‘Critical Point’ (Boerner, Xi, 1990-92) or
‘Basis Transformation’ (Agrawal, Boerner, 1989-92) op-
timization methods as is shown in (Boerner, Liu, Zhang,
1992; Boerner, Yan, Xi, Yamaguchi, 1992). These alter-
nate optimization results obtained for the symmetric co-
herent case present a very important contribution to radar
polarimetry in that a possible approach for solving the
optimization procedures in closed form also for the par-
tially polarized and partially coherent cases may have
been pioneered (Yan, Boerner, 1991, Boerner, Yan, Xi,
1992; Yamaguchi, Sasagawa, Sengoku, Abe, Boerner,
Yan, Xi, 1990; Bocrner, Liu, Zhang, 1992; Tragl, 1992-
90-91; Boerner, Yan, Xi, Yamaguchi, 1992) by first treat-
ing the coherent case for which analytical solutions for
P, and P, exist.

4. OPTIMAL POLARIZATION STATES FOR THE
PARTIALLY POLARIZED CASE

Consider a time-independent scatterer which is illumi-
nated by a monochromatic (completely polarized) wave
E7, for which the reflected wave Eg is, in general, non-
monochromatic; and therefore, partially polarized. Con-
sequently, the Stokes vector and Mueller matrix
formalism will be employed. There are three types of
energy density terms, next to the total energy density gso,
that can be optimized according to (7b,c,d) in Section 2.5.
We note here that alternate approaches were introduced
by Van Zyl (van Zyl, 1986-87, Zebker, van Zyl, 1991) and
Cloude (Cloude, 1988) which are based on principles of
target decomposition (Huynen, 1965-78-92-90, Huynen,
McNulty, Hanson, 1975; Boerner, 1992), but not further
considered here.

4.1 Optimization of the adjustable intensity ¢ g,

The energy density ggso, contained in the completely
polarized part g, is called the adjustable intensity because
one may adjust the polarization state of the receiver to
ensure the polarization match. We can rewrite the scatter-
ing process (7) in index notation as (Yan, Boerner, 1991,
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Boerner, Yan, Xi, 1992; Yamaguchi, Sasagawa, Sengoku,
Abe, Boerner, Yan, Xi, 1990; Giuli, 1986):

3

gsi= Y Migr,
j=0

(23a)
where j = 0,1,2,3. The adjustable intensity qgso has the
following property:
%)

3
j=0

where gri’s are the elements of the Stokes vector of the
transmitting wave Yan, Boerner, 1991, Boerner, Yan, Xi,

3

agso=| Y &
i=0

3

EMingj
j=0

(23b)

1992). The partial derivative of (ggso)” with respect to
g1k can be derived as:

3 3

3 3 :
3 (ggs0)’ 3 g5
= el iMig=2 M My g7 .
0 81 i; 9 g1k z:lgs * i; ,'20 G

(23c)

For optimizing the adjustable intensity, we apply the
method of Lagrangian multipliers (Leitman, 1962), which
yields

3 3
9(q8s0° 9D o )
ogm v‘2—2 Y (M Migri-wga)=0,
(23d)

where ®, is the constraint equation of (17a). Equation
(23c) is a set of inhomogeneous linear equations in
gr1 (w), gr2 (W) and gy3 (u). Then, the straightforward so-
lutions for the gr; (1) are three functions of p. Substituting
gri (W), (i=1,2,3) into the constraint condition of (17a)
leads to a sixth-order polynomial equation of u (Yan,
Boerner, 1991, Boerner, Yan, Xi, 1992; Bostinski, James,
Boerner, 1988). For each u value, we calculate
811 812 8713, and ggsp according to the formulae in (23a).
The largest (or smallest) intensity is the optimal intensity,
the corresponding g7 is the optimal polarization state of
the transmitted wave (Yan, Boerner, 1991, Boerner, Yan,
Xi, 1992; Boerner, Yan, Xi, Yamaguchi, 1992).

4.2 Minimizing the noise-like energy density term:
A =@ 8y

An unpolarized wave can always be represented by an
incoherent sum of any two orthogonal completely
polarized waves of equal intensity (Yan, Boerner, 1991,
Boerner, Yan, Xi, 1992; Boerner, Yan, Xi, Yamaguchi,
1992), which leads to 50% cfficiency for the reception of
the unpolarized part of the scattered wave given by:

3
(1-q) 85 = 8 — 4850 = D, Moj 817 -
j=0
_\/3 3 D
+V Y Mg 249
i=1(j=0

Hitherto, no simple method was found giving the analytic
closed form solution for the minimum solution [8], in-
stead, a computer numerical analysis was used, although
it looks feasible to find the desirable closed-form solution
using an alternate Newton-Kantorovich minimization
method (Leitman, 1962; Wait, 1979) also discussed in
(Cloude, 1991).

4.3 Maximizing the receivable intensity in the scattered
wave: (1 -q) s

The total receivable energy density consists of two parts:
100% reception efficiency for the completely polarized
part of the scattered wave and; 50% reception efficiency
for the unpolarized part. We may write the following
expression for the total receivable intensity:

3
1 1 1 1
5 +q)gso=qgso+5(1—q)gsSO=520Mo,<gTj+§
j=

2

\/ é iﬁ’[ijgl‘j

i=1 j=0

25)

Also, this equation can only be solved using numerical
analysis, unless we succeed with implementing the alter-
nate Newton-Kantorovich method (Cloude, 1991; Leit-
man, 1962; Wait, 1979) successfully.

S. NUMERICAL EXAMPLE AND INTERPRETA-
TION OF MATRIX OPTIMIZATION RESULTS

We have demonstrated that there exist several different
approaches for determining the optimal polarization states
in coherent monostatic radar polarimetry yielding the
identical results as illustrated for one example (Table 1)
in Fig.3 and Fig.4 showing and proving that Kennaugh’s
target characteristic theory and Huynen’s polarization
fork concept for the “coherent symmetric case™ are correct
and valid (which was set in doubt in various unpublished
government agency reports). For the partially coherent
case, no complete optimization procedure to determine the
optimal polarization states yet exists. However, from a
comparison of our results (Yan, Boerner, 1991, Boerner,
Yan, Xi, 1992; Yamaguchi, Sasagawa, Sengoku, Abe,
Boerner, Yan, Xi, 1990; Boerner, Liu, Zhang, 1992;
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Boerner, Yan, Xi, Yamaguchi, 1992; Kostinski, James,
Boerner, 1988), we may conclude that the optimal polari-
zation state theory will also be highly useful for treating
the partially dual polarization radar reception problem as
treated in (Yan, Boerner, 1991, Boerner, Yan, Xi, 1992;
Boerner, Yan, Xi, Yamaguchi, 1992). In all of the cases
investigated, it was demonstrated that for the partially
polarized case there also seem to exist five pairs of charac-
teristic polarization states (Boerner, Yan, Xi, Yamaguchi,
1992); however, whereas, for the coherent case (q = 1) the
absolute (normalized) power maximum at the co-pol max
(pem1) and co-pol null (pen1,2) locations, respectively, be-
comes

Poax (Pemt)/m* =1, o2 (Pem2)/m*=0 (26)

we find that for the partially polarized case (0 < g < 1) the
maximum normalized value will always be reduced by (1
- q)/2 and the achievable minimal normalized power can
never be less than (1 - q)/2, and that according to (S¢) for
the completely unpolarized case (q = 0), the achievable
minimal and maximal normalized powers become equal
and in the limit approach gso = 0.5; i.e., the power density
plot is flat in the extreme unpolarized case as illustrated
in Fig.5. In order to further pursue this heuristic finding,
first the direct relation to the eigenvalue/vector properties
of the ‘Corrected Polarimetric Covariance Matrix’, as
expressed in (10a), must be established separately for the
co-polarized and cross-polarized power density expres-

x-pol saddle T,

x-pol null &
-pol
co-pol null \ co-pol submax
C A
1 8y X2 co-pol null
ol = -
PR = 2 ~So
- \ \ b o
I, N2y 2y /'/
x-pol max “ s,
!
S
1 I x-pol max
I
Xl P
x-pol null A
& co-pol max Il
/
/
’

T, x-pol saddle

(@)

sions by determining the upper and lower bounds directly
in terms of the eigenvalues v; of (10a), In a next step, direct
optimization procedures of the Pauli spin matrix
[oi ; i=0,1,2,3 ] formulation of the Mueller matrix and
the covariance matrix approach (Tragl, 1992-90, Tragl,
LGneburg, Schroth, Ziegler, 1991) need to be further
advanced together with SU(n = 2,3,4) Lie group theoretic
analyses implementing next to the 2x2 Pauli spin
matrices also the 3 x 3 Hausdorff (or alternate Gell-Mann)
[8:; i=1,2,.,9] and the 4 x 4 Dira

[6;; I=0,1,2,...,15] matrices [10,20], so that the true
analytic expression for the respective power density plots
may also be established for the partially polarimetric
cases. The heuristic finding displayed in Fig.5 can also be
closely associated with the ‘polarimetric target decom-
position” approaches of Huynen (Huynen, 1965-78-92-90,
Huynen, McNulty, Hanson, 1975) and its alternate presen-
tations of Barnes (Barnes, 1984), Holm (Holm, Barnes,
1992), Pottier (Pottier, 1990), and especially Cloude
(Cloude, 1986-92-90-91-88), which still represents one of
the main unanswered questions in radar polarimetry.
However, after having established the unique relations
existing between [S], [G], [2] and [ M; ] for the coherent
case, the proper treatment and correct evaluation of Huy-
nen’s major contribution to radar polarimetry (Huynen,
1965-78-92-90, Huynen, McNulty, Hanson, 1975), i.e.,
his target matrix composition into sub-target-structure
matrices, may now be accomplished.

LC
x-pol null x-pol saddle

& co-pol max

x-pol max

135° 450

x-pol max

co-pol null

x-pol null &

x-pol saddle co-pol submax

RC

(b)

Fig. 3 - DISPLAY OF POLARIZATION FORK FOR SCATTERING MATRICES OF TABLE 1: (a) Characteristic polarization states
on the Poincaré sphere of the Example referenced to the new basis (AB) for the scattering matrix [S] with the characteristic polarization

ratios Pl = Pemt’ =0 (X1),0m2" = Pem2’ = ® (XZ)ypxml,Z, ==

=] (Sl,SZ)>pxsl,2l ==1(T1,12),and pcnl,2' =+ 1.668j (C1,C2); (b)

Characteristic polarization states on the Poincar) referenced to the old basis (HV) for the scattering matrix [S] of the example with

the characteristic polarization ratios

punt’ = Pemt’ = 0.414 exp (j90°) (X1) , pxn1 = Pem2 = 2.414 exp (- j159°) (C1) , and penz = 1.414 exp (- j20.7°) (C2)
and the geometric parameters v = 0.0,y = 30.9,0, = 90.0,0 = 22.5,¢ = 0.0,and T = 22.5.
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Fig. 4 - POLARIZATION STATE CHARACTERISTICS FOR [S], [£], AND [M] FOR COHERENT CASE OF TABLE 1: (a)

Co-polarized power spectrum; (b) Co-polarization states; (c) X-polarized power spectrum; (d) X-polarization states; (e)° Power
spectrum for matched two-antenna case.
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Fig. 5 - OPTIMAL POLARIZATION CHARACTERISTICS FOR PARTIALLY POLARIZED CASE: (a) Polarization dependence of the

adjustable intensity in terms of the tilt and ellipticity angles; (b) Dependence of received power density plots on degree of polarization
q:(1)gq=1,(2) q=038, (3) q =0 for the partially polarized case.
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TABLE 1 - Solutions of Three Methods for the Example of [ S | = 6215 (if
new basis (AB) old basis (HV)
o' P | v g power

lpl l 8° [p] N 80 81 g2 83 Py Pe
Pxnl 0 : arb. 0.4142 90.0 0.00 1.0 0.7071 0.0000 0.7071 0 4.871
Pxn2 0 | arb. 2.4142 -90.0 .0 1.0 -0.7071 0.0000| -0.7071 0 0.629
Pxm1 1.0000 90 j 1.0000 0.0 4.5 1.0 0.0000| -1.0000 0.0000| 2.25 0.50
Pxm2 1.0000 -90 1.0000 180.0 4.5 1.0 0.0000| -1.0000 0.0000| 2.25 0.50
Pxsl 1.000 0 0.4142 -90.0 1.0 1.0 0.7071 0.0000| -0.7071| 0.50 2.25
Pxs2 1.0000 -180 2.4142 9G.0 1.0 1.0 -0.7071 0.0000 0.7071f 0.50 2.25
Penl 1.6684 90 1.4142 -20.7 0.5 1.0 -0.3333| -0.8819| -0.3333 1.75 0
Pen2 1.6684 90 1.4142 -20.7 0.5 1.0 -0.3333| -0.8819| -0.3333 1.75 0

TABLE 2 - Comparison of the different approaches for determining the optimal polarization states in coherent

monostatic radar polarimetry

Reference
Channel T E— T ‘

[7] [6] [8] [9] (10 | [5] [19] [1,2]
—

max g same same same same same same same same
—

co-pol i same same same same same same same same

null g same same same same same --- same same
—>

g same same same same same - same same
s

max g same same same same same -- --- -
—

L g same same same same same --- — ---
s

x-pol saddle g same --- same same same -- - -
F —

point g same 2= same same same e = =
—>

null g | same same same same same --- -—- same

S
g | same same same same -—- | --- same

In extension of previous results it was found that there
exist eight distinct characteristic polarization states for the
symmetric matrix case, the three pairs of orthogonal
polarization states whose diameters are mutually at right
angles on the polarization sphere: the x-pol null pair
(identical to co-pol max pair), the x-pol max pair and the
x-pol saddle (turning point) pair. In addition, there exists
a pair of co-pol nulls lying in the plane spanned by the
x-pol-null and the x-pol max pairs, the target characteristic
plane spanned by the x-pol-null and the x-pol max pairs,
the target characteristic plane with the line (diameter)
joining the two x-pol nulls bisecting the angle between the
two co-pol nulls on this target characteristic circle. As a
result of these unique polarization fork properties, one can
show that once the two co-pol nulls have been found, the

entire polarization fork can be recovered; i.e., for the
description of a radar target we require the specification
of two distinct points on the polarization sphere, whereas,
only one for the description of a completely polarized
wave. In particular, our polarization transformation ratio
formulation is in complete agreement with Huynen’s
formulation and shows, given a measured matrix [S], that
the Huynen target characteristic parameters m,
QusV,Y,0m and o, can be uniquely determined; or in-
versely, given these parameters the scattering matrix [S]
can be uniquely reconstructed (Boerner, Xi, 1990-92).
Hence, the resulting Huynen fork concept represents a
unique example of a fundamental polarimetric radar in-
verse problem.
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6. OPTIMAL POLARIMETRIC CONTRAST
ENHANCEMENT COEFFICIENTS: ‘OPCEC’

Next to determining the eigenvalue and optimization
problems for [ S(AB)],[G(AB)],[Z(AB)] and [ M |
and its optimal (characteristic) polarization states “ a for-
midable still not completely resolved problem for either
symmetric or definitely for the asymmetric cases ” equally
important, the exact and correct expressions for the en-
hancement of the optimal contrast between two classes of
scatterers or scatterer ensembles must be determined. This
specific optimization problem was first considered in
depth by Russian and Ukranian radar polarimetrists, and
we refer to the recent review by Kozlov et al. (Zozlov,
Logvin, Zhivotovsky, 1992) in Boerner et al. (Boerner,
1992). In general, these two distinct classes of scatterers
may be defined as “T” and ‘C’, where “T” defines, for
example, the desirable (useful) scatterer (target: “T”) and
‘C’ the undesirable scatterer ensemble (clutter: ‘C’)
against which ‘T’ is to be discriminated or to be con-
trasted. The formal development of these ‘opcec’ expres-
sions associated with a specific matrix description in terms
of either [S(AB)],[G(@AB)],[2(AB)],[M] and/or
any combination of such, is also still unresolved, yet
solutions are in need for introducing more meaningful and
polarimetrically unique definitions for the polarimetric
co/cross-polar ‘signal-to-clutter ratio’,co/cross-polar de-
tection merit factors, etc. In the following, some of these
‘opcec’ expressions are introduced for the separate cases
of ‘a priori’ knowledge on [S(AB)],[ G (AB) ],
[Z(AB) ], andor [ M ], where in most cases unique
‘opcec’ expressions for the mixed co/cross-polar power
density and or relative phase coefficient problems must
still be found.

6.1 OPCEC for P./x (p) given [ S (AB)] for T and C:
‘opcec [S]’

Several distinct solutions for either the co/co, co/cross,
cross/co, cross/cross power density ‘T’ versus ‘C’ optimi-
zation cases exist, where

Pes([S(AB)Y]) has[SAB)r]Er

P ([S(AB)]) K45 [S (AB)c 1 E7
(27a)

0pcec{[S]}=

The solution is obtained from using the Lagarange multi-
pliers method, and it is strongly dependent on the solution
of the ‘point scatterer’ polarization fork solution (Boerner,
Liu, Zhang, 1992; Boerner, Yan, Xi, Yamaguchi, 1992).

6.2 OPCEC for P./x (p) given [G(AB)] for T and C:
‘opcec [G]’

Also this solution [5] depends, in general, on the polariza-
tion fork solution, using the Lagrange multipliers method
for solution

_ Pexs ([G@AB)r]) _ exci [ Gr)Er
Pexr([G@AB)])  e%cs[GelEr
(27b)

opcec{[G]}

6.3 OPCEC for Pc/x (p) and P given[Z (AB)] for T
and C: ‘opcec | [Z (P)]}

From inspection of the definitions of [ Z(AB) ] of (9a) and
[Z(pY) ] of (9b), it is apparent that in general, a distinct
combination of optimal contrast enhancement relations
between two scatterer classes ‘T’ and ‘C’ exists, involving
either P, (T) versus P+(C) or P, (C) , Py (C) ; Py (T) versus
P.(C),PHC), P (C), or versus its complex conjugate,
etc., and similar expressions can be found for
R (p), R«(p), etc., depending on the specific nature of
[Z(AB)r] and [ X (AB)c ] Little, yet is known, and the
solutions for optimizing [ My ] versus [ M¢ | must first be
established [10] in order to interpret the solutions for these
cases.

6.4 OPCEC for P./x given [ M ]: “opcec { [M;]”

In general, a partially coherent wave g can be decomposed
according to (5a) into its completely polarized component
g,’ and unpolarized component g, and it is the total
polarized energy of the desired scatterer ‘T’ which is to be
optimized by minimizing the respective power contribu-
tion of the undesirable scatterers ‘C’. Again, several
meaningful distinct opcec [M;] may be defined
(Ioannidis, Hammers, 1979; Tanaka, Boerner, 1992) de-
pending strongly on the particular nature of the scattering
scenario under investigation. The solution of this rather
complex multiparameter polarimetric optimization prob-
lem depends strongly on that for finding a complete set of
solutions for the single scatterer solution of [ M ] and
[Z], and the opcec solutions for [ 2 (AB) ]. Here one of
many possible distinct opcec definitions developed in
(Tanaka, Boerner, 1992) is introduced, assuming that
[ M7] and Mc¢ are known and the ratio of the completely

polarized components (g¢f)r is to be optimized versus
(gd)c such that
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[S(AB)]

N
s

< (16AB)])

SU@ *

/. __[JAB)] N
SU@4) 8U@3,9) .

’ \
[2AB)] oo T [ M(M) ]

SU(2) : PAULI SPIN MATRICES

_10 _10 _01 _O—j
[001’01 [01]'0_1 [02]‘10 [03]"].0

SU(3) : ALTERNATE GELL-MANN MATRICES (CLOUDE’S SET) :

(1 00 100 000 001 000
[81=|/0-10| [31=|{00 0| [&]1=[01 0| [31={000| [31={001
000 100 -1 00 -1 100 010
010 00 000 00
[81=|100| [81=[-00| [8]1={00,j| [8]1=/000
000 000 0 -0 00
SU(4) : DIRAC MATRICES
010 0] 0010 0001 0100 100 0
1000 000 i 00io0 1000 010 0
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000 i 1000 0-i00 000 -i 00-10
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000 -i 00i0 0010 000 i 100 0]
0010 0001 000 i 0010 0-100
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0100 000 1000 0100 0010
i0o0o0 0100 0-i00 000 00 0 -1
0-i00 0001 00 -0 0 i00 (1 0 00
i 000 00 -i 0 6 0001 . 000 o 0-100
[6,]~= [6,]= [65] = [6,1= [ =
" 0001 2 0i 00 8 00 " 0001 s 00 -10
0010)] 1000 0100 0010 00 01

Fig. 6 - THE POLARIMETRIC SCATTERING MATRIX TRYPTYCH ( 2°2 Sinclair [S(A,B)], 2x2 Graves [G(A,B)], 3x3(4x4)
Covariance [Z(A,B)], 4x4 Mueller (propagation) |/ Stokes(reflection) | Kennaugh(scattering) [M(Mj)] matrices for symmetric AB =
BA (asymmetric AB ¢ BA) cases with the SU(n) Lie groups: SU(2) 2x2 Pauli [ 0;5i = 0,1,2,3 |; SU(3) — 3 x 3 Hausdorff (Gell - Mann)
[8;i=1,2,..8]; SU(4) — 4 x4 Dirac [ 0;;i=0,1,...,.15 | matrices).



76 EARSeL ADVANCES IN REMOTE SENSING, Vol. 2, No. 1 -1, 1993

(&d)r _ \/ (8T + g1z + &)

(gf)c (ge1 + &2 + gt3)
g M) [Mr]gr
g1 M1 [Mc)er

opeec {[ M (g) ]} =

(27¢)

with [M] denoting a i x j subset of [ M ] where ([ M ];; i
=1,2,3;j=0,1,2,3), etc. Various solutions are considered
in (van Zyl, 1986, van Zyl, Papas, Elachi, 1987, Zebker,
van Zyl, 1987-91) using the Lagrange multipliers method.

6.5 Unresolved Polarimetric Contrast Enhancement
Optimization Problems

Whereas for the coherent point scatterer cases, the optimi-
zation problems for the contrast enhancement between
two scatterers are straight-forward, this is absolutely not
so far the partially coherent case for which strictly the
Mueller matrices need to be optimized for the sub-milli-
meter wave to optical spectral regions. However, in case
the co/cross-polar phases can be recovered from dual
polarization coherent radar transmit/receive systems, or
from multiple transmit/receive coherent polarization radar
systems, the implementation of the covariance matrix
approach becomes feasible simplifying the Polarimetric
Contrast Enhancement Optimization problem considera-
bly as is shown in various contributions to Boerner et al.
(Boerner, 1992), and the Corrected Polarimetric Covari-
ance Matrix presentation will soon play a key role in
POL-RAD/SAR vector signal/tensor image processing
within the microwave to sub-millimeter wave spectral
regions. However, in LIDAR POLARIMETRY, currently
we still need to implement the complete stochostic
Mueller matrix optimization analysis, i.c., the complete
partially coherent treatment, because ‘phase correlation’
of two orthogonal laser channels is technologically still
not completely feasible.

7. Lie SU(n = 2,3,4) GROUP EXPANSION OF THE
SCATTERING MATRICES

Although it was shown that identical solutions for the
’degenerate coherent case’ are obtained from the com-
bined eigenvalue and optimization problems of the four
distinct scattering matrices [ S (AB) |,[ G (AB) ],[ £ (4B) ]
and [ M ], no complete solutions for the partially polarized
and especially the partially coherent cases, have yet been
exhausted. However, well advancing feasibility studies
show that such complete solutions exist and can be ob-
tained via a reformulation of the four basic polarimetric

matrices in terms of the coherence matrix [J ] (or coher-
ence vector j ) formulation (5a) implementing SU(n =
2,3,4) Lie group expansions. Cloude (Cloude, 1986-92-
90-91-88) first introduced this concept in radar
polarimetry which is further expanded here in form-of a
matrix tryptych relating [ S (AB],[ G (AB) ],[ £ (AB) ] and
[ M (AB) ], with [ G (AB) ] representing a power density
subset of [S(AB)], as illustrated in Fig.6. Use is made of
the expression of the coherency matrix [ J ] in terms of the
SU(2) group 2 x 2 Pauli matrix [ o; | and its related SU(3)
3 x 3 Hausdorff (or alternate Gell-Mann) [ E §;], and
SU(4) Dirac 4 x 4 [ 6; ] matrices, which are listed with
Fig.6.

The three sets of Lie groups SU(n = 2,3,4) are useful in
reexpressing the properties of the characteristic (optimal)
polarization state theories derived from the scattering
matrices [ S (AB) |,| G (AB) ,[ Z(AB) ] and [ M ] via the
expansion for the associated compact form, e.g. Huynen’s
polarization fork representation (16). The exponential
matrix operations are derived from the general matrix
exponential series expansion

cxp{[A]}=[I]+[A]+(%)[A]2+(31!)[A]3+...

+(LJ[A]”+... (28)

n!

together with the Campbell - Baker - Hausdorff identities
( 1
exp{[Cl}=exp{[A]}exp{[B]}=[A]+[B]+

[[A ],[B]]+%[[[A LIALBI+[[BLBLIATL]+...

(29)
with [[AL[B]]=[A][B]-[B][A]
exp{[ST[A][S] '}=[S]exp{[A]}[S]"
det{exp{[A]}}=exp{Trace{[A]}}
exp([A]] =exp|-[4]] (30)

In radar polarimetry the four classes of scattering matrices
[SLIG],[Z] and [ M ] need to be expanded in terms of
the ¢ reduced characteristic state matrices’: [ y; ] satisfy-

ing
[A]=

(x,-[‘P,-],a,-=%Trace{[A][‘P,-H (30)

b &

i=1

Specifically, if exp {[A ]} represents a n x n unitary
matrix

[W]'=-[W.], Trace[[W,]}=0 (1)
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then the set of (n2 - 1) matrices [ Y ] are the »n x n anti-
hermetian matrices defined by the SU(n = 2,3,4) Lie
groups.

SU(n=2) : The Pauli Spin Matrices [ 6;i=0,1,2,3]

As shown in (6a) and (16), the Pauli spin matrices can be
used to re-expand the Sinclair and Mueller matrices,
where by including the idem matrix [ og ] =[], it can be
shown that with the [ o; ] of Fig. 6

[o2][01]=[03]
(32)

[o1P=[021=[00],[01][02] =~

so that with

g=[AHEV]THY) ,

the Stokes parameters can be reexpressed as

(33a)

3
gu—lTrace [Ou 2 [Ov]g\ Trace{[Gu][J_(HV)]}

(33b)

and the elements M, of [ M ] as

My =(1/2) Trace ([ ou ] [SHV) [ [ov ] [SWHW)T") .
(33c)

providing part of the tryptych solution defined in Fig. 6.

SU(m=3,4): The Gell-Mann [ 8;;i = 1,2,
Direc [ 6;;;i=0,1,2, ...,15 ] Matrices
Other expansions of [ £ (AB =BA) ] and of the related
symmetric Mueller matrix [ M (ij = ji) ] in terms of alter-
nate 3 x 3 Gell-Mann matrices [ 8;i = 1,2,...,9 | were first
used in radar polarimetry by Cloude (Cloude, 1986-92-90-
91-88) and in terms of the Dirac matrices
[65i=0,1,2,...,15 ] by Wanielik (Wanielik, 1988); and in
(Boerner, Liu, Zhang, 1992) a more complete comparative
formulation is developed.In order to complete the search
for the eigenvalue and optimization solutions of
[Z(AB) ] and [ M ] in narrowband radar polarimetry, its
closed from compact expressions in terms of the SU(n =
2,3,4) Lie group expansions need to be derived next,
similar to Huynen’s polarization fork formulation in terms
of the Pauli matrices [ 0;i =0,1,2,3], for both the sym-
metric (AB = BA/ij = ji) and the asymmetric (AB = BA /
ij = ji) scattering matrix cases in terms of the 3 x 3 Gell -
Mann and the 4 x 4 Dirac matrices, listed with Fig.6, for
the symmetric and the asymmetric cases, respectively.
Based on these complete closed form compact solutions,
in a second step, the pertinent optimal polarimetric con-
trast enhancement coefficients ‘opcec’ for determining the
‘optimal contrast’ between two classes of scatterers or
scatterer ensembles can be fully developed in compact
closed form also for the partially coherent case.

....,9] and the

CONCLUSION

Even so the full narrowband solutions (including the co-
herent, partially polarized and partially coherent cases) of
the characteristic polarization states and of the associated
optimal stochasticity coefficients have been in parts and
may be completely determined, the quest for detecting and
discriminating low RCS targets embedded in a rapidly
changing, dynamic background clutter environment, for
example, such as that of low RCS objects skimming over
a dynamically rough, rapidly changing sea or continental
tree-covered rugged terrain surface, will ultimately re-
quire the generalization of these concepts to the wideband
spectral domain covering the entire ultrawideband electro-
magnetic non-invasive spectral region.Thus the ultimate
goal is to develop tools derived in narrowband radar
polarimetry which are applicable to UWB (ultrawide-
band) sensing and imaging of low RCS radar targets
embedded in a dynamic, rapidly changing background
clutter. This requires, in the next step, the generalization
of the radar (cross section) scattering matrices in the
frequency domain expressed in terms of the polarimetric
target eigenresonance structure of the various polariza-
tion-dependent matrix elements leading to the concept of
polarimetric wavelets. These concepts are being actively
pursued and it can already be demonstrated that the SU(n
=2,3,4) Lie group cxpansions will play a dominant role in
developing the most robust optimal target versus clutter
contrast enhancement algorithms which are completely
polarimetric ultrawideband in nature and make full use of
the “polarimetric wavelet” descriptions. Whereas the nar-
rowband polarimetric radar optimization algorithms here
developed are of immediate and direct interest to the
proper interpretation of narrowband POL-RAD/SAR mi-
crowave signatures in air-borne and space remote sensing
in wide-area surveillance of the terrestrial and planetary
environments, the development of generalized
polarimetric impulse radar optimization algorithms will
become essential for implementing UWB-POL-
RAD/SAR sensing and imaging techniques for instan-
taneous detection of low RCS target embedded in dynamic
background clutter in practice (Boerner, Liu, Zhang, Naik,
1992).These ultrawideband polarimetric radar problems
will be the subject of a third NATO-ARW-WPDR’93 on
‘Wideband Polarimetric Doppler Radar / Lidar Sensing
and Imaging’ as proposed in (Boerner, 1992).
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