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ABSTRACT

Conventional active microwave imaging implies a syn-
thetic aperture radar (SAR) range-Doppler processor. The
range-Doppler processing is inherently two-dimensional.
Resolution in the range dimension is obtained by pro-
cessing transmitted bandwidth. Resolution in the cross-
range dimension is obtained by processing the Doppler
shift caused by relative motion between the transceiver
and the target. Range and Doppler variables are assumed
to be rectangularly orthogonal, hence the small angle
limitation associated with conventional SAR. What is
more important, these variables are the only dimensional
information available using range-Doppler processing.
Researchers have been working on three-dimensional
SAR implementations. Most of the research is concen-
trated in the use of ancillary data. Ancillary data includes
simple techniques using target shadowing, and more com-
plex techniques such as monopulse radars and ISAR pro-
cessing [Wehner, 1987]. In contrast microwave imaging
using a holographic SAR processor is inherently three-di-
mensional. Holographic processing provides at least two
techniques for recovering three-dimensional target infor-
mation. These techniques are projection plane imaging
and tomographic imaging. Neither of these techniques
requires ancillary data to form the third dimension. The
difference between traditional SAR and holographic SAR
is the mapping of measurements into Fourier space. ISAR
is comparable in this mapping, except ISAR relies on
target motion in two dimensions to provide three-dimen-
sional images. Holographic processing does not rely on
cooperative target motion for three-dimensional resolu-
tion. This paper describes the theory required to imple-
ment both projection plane and tomographic signal
processors. Two experiments are presented to illustrate the
capabilities of each technique for three-dimensional im-

aging.

Key Words (Microwave Imaging, Three-Dimensional Im-
aging, Microwave Holography, Inverse Problems).

INTRODUCTION

Holographic SAR processing is approximately a Fourier
transform operation [Mensa, 1984]. Measurements of the
field scattered from a given scene are mapped into Fourier
space according to the wavevectors associated with the
transmitted and scattered fields. If measurements are made
at an inclination angle outside (above) the plane of the
target, and these measurcments utilize azimuthal angular
and frequency diversity, then three-dimensional target
information is obtained. The Fourier contour is a truncated
cone whose surface is filled with complex scattered field
measurements [Langenberg, 1987]. The fact that this tech-
nique provides three-dimensional resolution from a single
pass by the target is not reported in the literature. Experi-
ments to date have provided for the projection of the
measurement cone into the horizontal plane only [Chan
and Farhat, 1981]. An example of the type of measurement
and image provided by this projection is shown in figure
1. Projecting the Fourier contour onto the horizontal plane
provides an annulus of measurements as shown in figure
1. The scattered field data occupying this annulus are then
inverted using a two-dimensional inverse Fourier trans-
form to obtain an image containing width and depth infor-
mation about the target, as shown in the figure. However,
the Fourier contour is just as easily projected into any of
the three-principle planes containing the target. The image
of the target can therefore be collapsed to give profiles
containing height, width, and depth information. This
imaging process will be referred to as projection plane
imaging. The implication of this processing technique is
that three-dimensional target information can be obtained
from a single pass by the target. It must be noted that each
image plane contains all the illuminated sources compris-
ing the target. In other words, no single plane contains
completely unique information. A full unique three-di-
mensional image of a target is possible using tomographic
processing of three-dimensional measurements. Three-di-
mensional measurements can be obtained by synthesizing
both azimuth and elevation angular apertures and trans-
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mitting a frequency diverse waveform at each aperture
position. Using all three diversity variables means that the
scattered field measurements occupy the volume of the
truncated cone in Fourier space. Thus, using the Fourier
projection-slice theorem a full three-dimensional image of
the target can be constructed.

To illustrate both three-dimensional processes, projection
plane and tomographic imaging, two basic laboratory ex-
periments are presented. The first experiment reported is
designed to investigate the projection plane processing
technique. Measurements and images of a simple target
consisting of several discrete scatterers illustrate the col-
lapsing of the Fourier contour into multiple planes, as well
as the three-dimensional information content of the recon-
structed projection images. The more well known tomo-
graphic processing is illustrated by a second laboratory
experiment in which a dielectric cone with simple internal
structure is reconstructed in several tomographic slices.
To contrast projection plane imaging with tomographic
imaging, projection images of the cone target are also
included.

Both types of three-dimensional imaging techniques have
application in medical diagnostics, as well as, in en-
vironmental remote sensing and military target classifica-
tion. Tomographic processing is most popular with
medical and non-destructive evaluation applications.
These applications can accommodate the effort required
to obtain large three-dimensional data sets. Multi-planc
holographic projection imaging has not been ficlded.
However the most important applications of the technique
will be environmental remote sensing and military target
classification. For these applications single passes over
the target area are more desirable due to the cost and risk
involved in multiple passes or multiple platforms for data
acquisition.

1. THEORY

The far-field microwave inversion algorithm known as
holographic SAR relates, within the Born approximation,
the target scattering function to the inverse Fourier trans-
form of the phase normalized scattered field. To within a
constant, and assuming target scattering properties are
essentially constant with respect to frequency, the scalar
version of the algorithm for plane wave excitation can be
written as [Langenberg, 1987]:

OLp(R)=Fip | o7 (K)e'*F| (1)

where @ (K) is the scattered far-field, Oy p (R ) is the
function associated with the scattering function of the
target, R and K are the Fourier variable pair, k is the

Kx

Fig. 1 - Typical Fourier annulus projection and corresponding
image formed using a holographic SAR processor.

incident wavenumber, and R is the distance between the
transmitter and the phase reference point. The phase ref-
erence point is an arbitrarily positioned point at which the
phase of the incident field is known. Conventional experi-
ments generally establish the phase reference at the center
of the target through a calibration measurement. The scat-
tering function, Orp (R ) is a low pass filtered version of
a function describing many scattering mechanisms. This
function has been reported as an object function
[DeVaney, 1980], and a reflectivity function [Mensa,
1984]. The object function is a mathematical abstraction
that is described as a Kronecker Delta type of function
used to describe the shape of the target. Clearly this does
not provide a true physical description of the inversion
process. Neither is the description as a reflectivity func-
tion adequate to describe the physical inversion process.
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The nature of the function is a complicated combination
of reflectivity, edge scattering, creeping wave reflections,
and source interactions. This scattering function is the end
goal of the inversion process. A magnitude or intensity
plot of this function provides the image of the target. The
scattered far-field provides the starting point for the math-
ematical inversion in (1). As indicated in (1), the measure-
ment process used to obtain the scattered field can be
considered a Fourier space process. The magnitude of the
Fourier vector is dependent on the wavelength of illumi-
nation. The direction of the Fourier vector when consider-
ing far-field measurements is determined by the relative
angular positions of the transmitter and réceiver antennas.
The antenna positions give the propagation directions of
the primary and scattered wavefronts. The Fourier vector
associated with the measurement process is therefore rep-
resented by:

N N
K=k<R,+R,> 2)
N . . . N
where R, is the unit vector in the receive direction and R,
is the unit vector in the transmit direction. The properties
of the Fourier vector determine how scattered field

measurements are mapped into Fourier space. This map-
ping determines the properties of the image.

Two measurement parameters available to manipulate the
Fourier vector are the illumination wavelength, and the
angle between the transceiver and target. From (2), the
angle of the Fourier vector is determined from the position
of the transmit antenna and the receive antenna. To de-
scribe the behavior of the Fourier vector, the general
measurement geometry of figure 2 is used. In figure 2, the
transmit antenna and the rececive antenna are positionally
independent, and can be placed at, and moved through,
any azimuth or elevation position. The choice of coordi-
nate system is arbitrary; but for simplicity, the origin is
placed at the center of the target scene. The sequence of
azimuth and elevation angles at which measurements are
made is completely arbitrary, as is the sequence in which
frequencies are transmitted at each angular position. To
provide a tractable, yet general, example of Fourier map-
ping, a few assumptions are made. First, it is assumed that
measurements are made at several azimuth angles sur-
rounding a target before moving to another elevation angle
and repeating the azimuth scan. It is further assumed that
only elevation angles above the xy-plane are available.
For constant wavelength illumination, Fourier space will
be filled according to the map of figure 3. As indicated in
part (a) of the figure, each azimuth scan results in a circle
parallel to the KxKy-plane. Part (b) of the figure indicates
that the placement of each circle along the Kz-axis is
determined by the elevation angle. The elevation angle
also determines the radius of the circle in the KxKy-plane.

By employing two-dimensional angular diversity, the sur-
face of the Ewald sphere associated with the wavelength
of illumination is filled with data. The choice of azimuth
angles and elevation angles determines what the contours
on this spherical surface will look like.

Az

y

Fig. 2 - Generalized geometry for holographic recording. 0, and
@, are the elevation and azimuth angles corresponding to the
transmit antenna, 0; and ®; are the elevation and azimuth angles
corresponding to the receive antenna, R; and R, are the radius
vectors to the transmit and receive antennas respectively, k; and
kr are the transmitted and scattered wavevectors, respectively.

The contours shown in figure 3 will have the same shape
for either monostatic or fixed angle bistatic configura-
tions. However, for monostatic, the angle of the Fourier
vector for any given measurements point is equal to the
receive position angle. For bistatic configurations, the
angle of the Fourier vector is the bisector of the angle
between the transmitter and receiver. The contours of
figure 3 assume that the transmit and receive platforms
move in tandem. This, of course, is always true for mon-
ostatic measurements, but multi-platform configurations
where this is not true are possible. These cases will be
referred to as multistatic configurations. Of significant
interest is a scenario where the transmitter is fixed with
respect to the target, and the receiver is free to move about
the target to form the measurement aperture. Since the
transmitter is constantly illuminating the target from a
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single angle, only a single set of scattering sources sup-
ported by the target is active. For the monostatic and fixed
angle bistatic configurations, the image results from an
angular average of scattering sources. From (2) it is clear
that multistatic measurement contours in Fourier space
will be different from those shown in figure 3. Figure 4
contains a plot of the multistatic angular diverse Fourier
contours. The contours are no longer concentric, but tan-
gent at the point where the transmit antenna and the
receive antenna are spatially separated by 180 degrees in
azimuth. The Fourier space available with the receiver
rotation configuration is exactly half that available for the
monostatic configuration.
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Fig. 3 - Monostatic and fixed angle bistatic Fourier mapping. The
components of the Fourier vector are normalized to the maximum
transmitted wavevector ko . (a) KxKy-plane Fourier contours
corresponding to azimuth over elevation object rotation; (b)
location of KxKy-planes along the rotation axis.
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Fig. 4 - Multistatic Fourier mapping. The components of the
Fourier vector are normalized to the maximum transmitted
wavenumber, ky . (a) KxKy-plane Fourier contours correspond-
ing to azimuth over elevation receiver rotation; (b) location of
KxKy- planes along the rotation axis.

It is possible to acquire sufficient data for imaging through
angular diversity alone. However, it is far more efficient
to use a combination of angular and frequency diversity.
Frequency diversity provides range resolution in SAR
processors, and serves the same function in holographic
processors. The relationship between the frequency of
illumination, and the magnitude of the Fourier vector is
linear. As the illumination wavelength is varied, the radius
of the Ewald sphere is varied. Frequency diversity has no
effect on the direction of the Fourier vector, and therefore
exhibits the same behavior regardless of the antenna con-
figuration. Figure 5 contains a plot of frequency diverse
Fourier space with a parameter of elevation angle. The
scenario in the figure assumes a uniformly sampled
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waveform, which results in uniform sampling along the
Fourier contour. However, with adequate sampling, any
waveform can be used with the processor. The elevation
angle serves to change the slope of the frequency line.
Note that an elevation angle of ninety degrees, with re-
spect to the vertical, results in a horizontal line. If the
elevation angle is kept constant at an angle different from
ninety degrees, and an azimuth only aperture is synthe-
sized, then the Fourier contour can be represented by the
truncated cones in figure 6. Part (a) of the figure represents
the Fourier surface for monostatic [Langenberg, 1987] and
fixed angle bistatic configurations, and part (b) of the
figure represents the Fourier surface for a multistatic con-
figuration.

theta = 30 deg.
theta = 45 deg.
theta = 60 deg.
theta = 90 deg.
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Fig. 5 - Frequency map of Fourier space for several Fourier
elevation angles, theta. The components of the Fourier vector are
normalized to the maximum transmitted wavenumber, ky .

To form the measurement surfaces of figure 6, two degrees
of freedom are required of the measurement configuration.
However, the resulting contour has spatial frequency ex-
tent in each of the three Fourier dimensions. This implies
resolution in each of the three spatial dimensions. It is
traditional that images are formed in the xy-plane [Chan
and Farhat, 1981, Mensa, 1984, Schindel, 1989]. To ac-
complish the inversion, either the measurements are made
using a waterline configuration [DeVaney 1981, Mensa,
1984], or the measurement contour is projected to an
annulus in the KxKy-plane [Chan and Farhat, 1981]. To
project the contour into the elevation planes, x=0 and y=0,
requires no more computational effort than projection into
the z=0 plane. As long as the measurements are made at
an elevation plane other than the z=0 plane, the target can
be resolved in cach of the planes. An example of the
projection of a monostatic contour into the three principle
planes is shown in figure 7. The azimuthal measurement

A%

- -, =

~Y

Ky

Fig. 6 - Two degree-of-freedom measurement aperture obtained
using frequency diversity and full coverage azimuthal angular
diversity at a constant elevation. (a) monostatic and fixed angle
bistatic surface; (b) multistatic surface.



134 EARSeL ADVANCES IN REMOTE SENSING, Vol. 2, No. 1 -1, 1993

0.8
| - 0.7 + R
:I " b I-.-.--...l
= = sl EEy _—
Y A Il
II:I Y] h ll-. " " " --II
= " = 7 I - ~05H = = " s " ", T LB
n | ] ™ : l ! M>" i E B g .l ..I.I.. -. m B N
- : : E I - 04 < .'.'.-..- mi® l..l-.-..
™ - = I i i g n .Il.Il. .. a N
"= B | .I. LUl " .'
- - ! I - 0.3-: --..._:P.“--“.- " "a
- ] l = 0.2 1 .l P‘ \'.‘l
P — i [ O RA——
06 -04 02 0.0 0.2 04 0.6
K, /kg
K, / kg
02 .2 1 2 3 1 2 3 1 -2 1 2 3 1 3 4
0.3 - R N
J A —
0.4 - NEEEE ENEEE N NNE AEEE
o EENEEEEEEN NNNEEEENE
M a4
~ N ENEENE EEEEE NN EENEEN
N 0.5 EEEEENEE NN EEENEENEEE
0.6 SEEE EE SN E N EEEEEEEEN
] EEE EE NN EEEEEEEEEEES
0.7 EEEE S EN EENGNEEEENENE
EEE N S EE EENEENEENESESR
0.8
-06 -04 -0.2 0.0 0.2 04 0.6

Fig. 7 - Projection of a partial coverage two degree-of freedom-measurement aperture into the three principle Fourier space planes.
Components of the Fourier vector are normalized to the maximum transmitted wavenumber, ko .

aperture is synthesized over a ninety degree azimuth aper-
ture, which is symmetrical about the x-axis. The elevation
of the antenna is forty-five degrees. Projection of the
truncated cone into the xy aperture gives the conventional
truncated annulus area. Projection of the cone into the
xz-plane maps as a trapezoid area with ninety degrees of
aperture. Projection of the contour into the yz-plane re-
sults in a much smaller angular aperture. This will result
in an xy-plane image with relatively poor resolution in the
track dimension. Processing these three orthogonal planes
gives plan and elevation views of the target.

Multiple projection plane images will provide three-di-
mensional information about the target from a single pass
measurement set. However, each of the images formed
from the Fourier map of figure 7 will contain all of the
measured scattering information. No single plane contains
unique information. To obtain unique three-dimensional
information about the target, a true three-dimensional
volume of Fourier space must be filled with measure-
ments. This requires the use of both azimuth and elevation
angular diversity and frequency diversity. The volume of
Fourier space filled with data can be visualized by com-
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bining the components of diversity illustrated in figures
3(a)and 5. Figure 5 depicts frequency diversity and eleva-
tion angular diversity. Adding the azimuthal angular di-
versity of figure 3(a) has the effect of rotating the plot of
figure 5 about the Kz axis. This rotation has the effect of
filling several concentric conical surfaces of figure 6(a).
The volume occupied by these concentric cones is shown
in figure 8. Since three-dimensions are employed in the
measurement schemes, the measurement volume has
finite spatial frequency bandwidth in all three dimensions.
Therefore, true resolution is obtained in all three spatial
dimensions.

Kx

Fig. 8 - Three-dimensional spectral measurement volume ob-
tained using two-dimensional monostatic angular diversity com-
bined with frequency diversity.

Once measurements made with the three degrees-of-free-
dom are available, it is possible to reconstruct the entire
three-dimensional distribution of scattering sources resid-
ing within the volume of the scattering object. The recon-
struction may be accomplished using a three-dimensional
FFT. However, it is generally not possible to view the
entire three-dimensional structure of the reconstructed
sources in an easily interpretable fashion. This is espe-
cially true of penectrable scatterers. A three-dimensional
secondary source distribution requires four dimensions of
the plotting apparatus. This problem can be overcome
through the use of tomography. Tomographic processing
is used to generate two-dimensional slices, called tomo-

grams, of the reconstructed three-dimensional scattering
sources [Ramachandran and Lakshminarayanan, 1971].
The entire three-dimensional reconstruction consists of a
series of these tomograms. Tomography is based on the
Fourier projection-slice theorem [Radon, 1917]. This
theorem states that the inverse Fourier transform of an N-1
dimensional projection, of an N dimensional Fourier
transformed function, yields a slice of the function in
object space. The theorem is easily derived starting with
the three-dimensional secondary source function. If the
function p(x,y,z=b) is taken as the z=b plane slice of the
three-dimensional secondary source function, then math-
ematically the slice can be selected using a two-dimen-
sional Dirac delta function, as shown by:

o0

p(xyz=p)=pep(xy)= [ playz)d(B-z)dz
3)

where p; - (x,y) is shorthand notation for the slice of the
three-dimensional sources contained the z = 3 plane. Sub-
stitution of (3) into the three-dimensional Fourier trans-
form of (1), yields the projection slice theorem in the form
shown below:

e 59) = 5 e Ko 55| g

where the Fourier domain projection is given by the inte-
gral equation:

©

Pz=ﬁ<Kx,Ky>= ffm P(KX,K},,KZ) JdEP gk, (5)

Equation (5) weights each of the measurements in all of
the Kz-planes of figure 8 according to the indicated ex-
ponential phase term, and integrates the resulting filtered
measurements over all recorded Kz planes. The physical
interpretation of the projection slice theorem is that of
propagating plane waves of wave vector Kz in the z-direc-
tion by an amount 3 . The plane waves are then added
coherently to form the projected two-dimensional second-
ary source spectrum. This spectrum is inverted using the
two-dimensional version of the algorithm to obtain the
slice z =  of the scattering function. Unlike the projection
imaging process, the tomogram is a unique representation
of the scatterers occupying the z = 3 plane. No out of plane
sources are projected into the tomogram. To fully recon-
struct the scattering function, the process must be carried
out for several values of 3 . From an operational point of
view, this may be restrictive for field measurements since
several passes over the target area are necessary to acquire
the volume of data required for tomographic reconstruc-
tion.
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Fig. 9 - Schematic representation of the target used to verify three-dimensional projection plane imaging.

2. EXPERIMENTAL EVIDENCE

Microwave holography offers two types of three-dimen-
sional imaging to be performed. These are projection
images and tomographic images. To demonstrate each of
these processes, two experiments are presented. Both ex-
periments are performed using a monostatic measurement
configuration, but the method is equally applicable to
fixed angle bistatic measurements and multistatic
measurements. The first experiment is designed to verify
the projection plane imaging process, and indicate the
information obtained from projection images. The second
experiment illustrates the tomographic reconstruction of
scattering sources supported by a target. Projection im-
ages of the target are presented for comparison of the two
techniques.

To demonstrate the capabilities for three-dimensional pro-
jection plane imaging, a simple target is used. This target
consists of stainless steel ball bearing scatterers placed in
a three-dimensional pattern on a dielectric foam support.
The target is shown schematically in figure 9. The ball
bearings are placed in a manner which provides a different
pattern of scatterers in each of three principle projection
planes. Scatterer placement is shown in figure 10. As
shown in the figure, the scatterers form a pie slice shape

in the xy-plane, a distorted rectangle in the xz-plane, and
a forty-five degree right triangle in the yz-plane. These
patterns allow easy verification of the three-dimensional
capabilities of microwave holography. Specifically, the
theory indicates that as long as the transmit and receive
antennas do not lie in the same elevation plane as the
target, then resolution is obtained in three-dimensions
from a single angular sweep of the target. The experiment
is designed for large scene size, high resolution, and more
than four times oversampling. Experimental parameters
are listed in table 1. The target is placed on a rotating
pedestal so that the scatterers will reside in the proper
planes, as shown in figure 10. The experiments provides
for high resolution in the xy- and xz-planes, but extremely
poor resolution is obtained in the yz-plane. Figure 11
contains the magnitude of the Fourier mapped hologram
for the experiment described in table 1. Figure 12 contains
the reconstructed images. Scatterers lying in the xy-plane
appear slightly defocused in the image. This is due to a
misalignment of the calibration target and the discrete
target. Scatterers associated with the xz-plane are focused.
The defocused source appearing in the image of this target
plane is the projection of one of the scatterers lying outside
the target plane. The images also contain clutter associated
with the foam base and bearing supports. The position of
the scatterers is consistent with the target in both the xy-
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and xz-plane images. The geometric patterns are con-
sistent with those indicated in figure 10 verifying resolu-
tion in both plan and elevation images. As indicated by the
Fourier space plots, resolution in the yz-plane is very poor

in the track dimension due to the small angular aperture.
Resolution in the cross-track dimension is equal to that of
the other images since resolution in this dimension is
primarily due to bandwidth.

9

5 X

Fig. 10 - Three-dimensional positions of the ball bearing scatterers comprising the target of figure 9.

K, (©)

Fig. 11 - Magnitude of the Fourier mapped measurements for the discrete scatterer target. (a) KxKy-plane data; (b) KyKz-plane data;

(c) KxKz-plane data.
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(b)

(a)

Fig. 12 - Projection plane images of the discrete scatterer target. The numbers correspond to the scatterer positions shown in figure

10. (a) xy-plane image; (b) yz-plane image; (c) xz-plane image.

The defocusing of these out-of-plane scatterers produced
the idea of being able to refocus the image. Depth of focus,
a traditional figure of merit for SAR sensors, is dependent
on the resolution of the sensor [Wehner 1987]. As shown
in table 1, the experiment design provides for a resolution
cell on the order of 0.75 cm. Since the physical extent of
the target is much greater than the resolution cell size,

scatterers outside the principle focal plane (depth of focus)
of the processor appear blurred. The capability of spatially
adjusting the focal plane has been built into the processor,
allowing the processor to move the plane of principle
focus along an axis perpendicular to the plane containing
the image. This capability works by modifying the phase
of the measured data according to the thin lens transfor-



Schindel: Three-Dim. Aspects of Microw. Holography

139

mation [Goodman, 1968]. The refocused measurements
are then processed normally. An example of the refocus-
ing capability is shown in figure 13. The data has been
refocused so that the principle focal plane is parallel to the
xy-plane and shifted along the positive z-axis by 0.6096
m. This places the focal plane at the top of the target of
figure 10. Scatterers 1,2,3, and 11 of figure 10 are repro-
duced in the refocused image. The remaining artifacts in
the reconstruction result from the projection of out-of-
plane scatterers. This refocusing capability provides
further indications that even a single pass by the target can
produce three-dimensional information without using an-
cillary data such as shadow length.

Table 1. Design parameters and image characteristics for the
discrete target experiment.

DESIRED PARAMETERS: A
Angular Aperture Degrees Radlans
Increment 0.2500 0.0044
Incident 43.5000 0.7592
Resolution Inches Centlmeters
Track 0.7500 1.9050
Cross-track 0.7500 1.9050
GHz Hz
Start Frequency 6.0000 6.0000E+09
; 7 7
REQUIRED PARAMETERS: YA
Frequency GHz Hz
Bandwidth 11.3931 1.1393E+10
Increment 0.0568 5.676TE+07
Maximum 17.3931 1.7393E+10
# of Samples 201 201
Wavelength Inches Centimeters
Average 1.0057 2.5546
Angles Degrees Radians
Aperture 42.11 0.7349
Increment 0.1870 0.0033
# of Samples 226 226
IMAGE CHARACTERISTICS: Y4
Feet Meters
Scene Size 12.54 3.8233
Resolution Inches Centimeters
Track 0.7500 1.9050
Cross-track 0.7500 1.9050

The discrete target experiment provides experimental
verification of the three-dimensional projection plane im-
aging capabilities of microwave holography. From an
operational standpoint, projection plane imaging is highly
desirable because it requires a single angular scan of the
target scene. The disadvantage of projection plane imag-
ing is that all the scatterers comprising the image appear
in each projection plane. This is evidenced in the images
contained in figures 12 and 13, where the out-of-plane
scatterers are defocused artifacts in each of the projec-
tions. This disadvantage can be overcome by tomographic
processing. As discussed in the theory, tomographic pro-
cessing provides true three-dimensional imaging capabil-

ity. Only scatterers contained in the plane of interest are
reproduced in the image. The disadvantage to tomo-
graphic processing is that the processor requires a true
three-dimensional data set. From an operational point of
view, this requirement amounts to several angular sweeps
of the target at different elevation planes.

Fig. 13 - Image reconstruction after the KxKy-plane data has
been refocused to the z=0.6096 meters plane. The numbers corre-
spond to the scatterer positions shown in figure 10.

To illustrate the tomographic processor, the target of
figure 14 is used, and a full three-dimensional data set is
acquired. The experiment parameters are shown in table
2. The cone is made of dielectric foam, and has a sphere
milled out of its center. The conical shape of the target
provides a different cross-section for every tomogram
along the axis of the cone. The spherical void provides
internal structure to allow the investigation of target pene-
tration. Figure 15 indicates the position of the tomograms
presented in figure 16. Parts (b) and (c) of figure 15 show
tomograms above and below the cone target to show that
no sources associated with the cone appear outside the
target volume. The sources indicated in part (c) of the
figure are correlated with the target support structure.
From figure 16, it is apparent that the tomographic proces-
sor is reconstructing only scattering sources which actu-
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Table 2. Design parameters and image characteristics for the dielectric cone experiment.

MEASUREMENT PARAMETERS: WMW/////&%
Frequency GHz Hz /
Bandwidth 14.00 1.40E+10
Increment 0.07 7.00E+07
Maximum 18.00 1.80E+10
# of Samples 201 201
Wavelength Inches Centimeters
Average 1.07 2.72 %
%////////////////////% AZIMUTH PLANE ELEVATION PLANE
Angles 4 Degrees Radians Degrees Radians
Aperture 180.00 3.14 90.00 1.57
Increment 0.50 0.01 0.50 0.01
# of Samples 361.00 361.00 181.00 181.00
IMAGE CHARACTERISTICS: HORIZONTAL PLANE ELEVATION PLANE
Feet Meters Feet Meters
Scene Size 7.00 2.1343 7.00 2.1343
Resolution Inches Centimeters Inches Centimeters
Track 0.4201 1.0671 0.4201 1.0671
Cross-track 0.5347 13582 1.0694 2.7164
ally lie in the plane of interest. Due to the linearization A
approximation required for inversion, only the first-order  Djelectric Foam
scattering sources are visible [Wang and Chew, 1989].
The first-order scattering sources are the edge of the cone,
and the spherical void, as well as, the standing waves: Spherical Void
supported by the dielectric-air interface in the void. Only
half of the cone appears in any of the tomograms. This is 0.3048 m
due to the fact that a 180 azimuthal aperture was synthe-
sized during the measurement process. Part (f) of figure 0.076 m
16 contains the tomogram coincident with the base of the
cone. There are some scatterers visible in the center of the
image. These scatterers correspond to the structure used Y
to support the cone target during the experiment. For
comparison purposes, plan view and elevation view pro- ‘
jection images of the cone target are shown in figure 17. ’ - i35

These image are obtained by processing the azimuth scan
acquired when the antennas are located at an elevation of
forty-five degrees. These projection images contain all of
the sources supported by the target.

Fig. 14 - Schematic representation of the target used for verifica-
tion of the tomographic capabilities of microwave holography.
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Fig. 15 - Relative location of the tomograms presented in figure 16. Parts (b) and (c) depict tomograms above and below the cone.

Sources present in (c) are due to a support rod used to fix the cone to the rotating pedestal.
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© y B @ 3
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Fig. 16 - Tomographic reconstruction of the dielectric cone target. Parts (a) through (e) correspond to images of sources lying in the
planes indicated by (a) through (e) lines in figure 15.
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(b)

Fig. 17 - Projection plane images of the dielectric cone iarget obtained by processing the single azimuth sweep corresponding to
forty-five degrees elevation, 6 = 45° .
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CONCLUSION

Microwave holography has been presented as an alterna-
tive to the more conventional SAR and ISAR imaging
radars [Farhat, 1981, Langenberg, 1987, Mensa, 1984,
Munson, 1983]. Most of the work to date has concentrated
on two-dimensional imaging, or three-dimensional imag-
ing using tomographic techniques [DeVaney, 1981,
Mensa, 1984]. Some experiments have been reported in
the literature, but the projection images are of two-dimen-
sions only [Farhat, 1981]. SAR imagers do not possess
inherent three-dimensional imaging capability. ISAR im-
agers can produce resolution in three-dimensions pro-
vided object motion is sufficient in two of the dimensions.
Holographic SAR requires no additional processing or
data acquisition to provide for three-dimensional projec-
tion plane imaging. This capability is shown with the
discrete target experiment reported in this paper. In addi-
tion to projection plane imaging, three-dimensional reso-
lution is possible using tomographic processing with a true
three-dimensional mcasurement set. Comparison of the
two techniques is facilitated by the second experiment
reported in this paper.

Both types of three-dimensional imagery have advantages
and drawbacks. From a data acquisition point of view, the
projection plane imaging process is the more efficient of
the two techniques. This process requires only a single
pass over the target to produce three-dimensional resolu-
tion. This advantage is important for remote sensing re-
quiring airborne, or spaceborne platforms. The drawback
to the technique is that each of the image planes formed
from the data set will contain projections of all scattering
sources comprising the target. To overcome this problem
a full three-dimensional measurement is required. Tomo-
graphic processing can then be utilized to image specific
planes of the scattering function. This is the most desirable

technique for controlled experiment applications such as
non-destructive testing or medicine.
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