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ABSTRACT

When determining the nature of speckle in microwave
POL-SAR 1mage analysis, various known methods of
speckle reduction are reviewed and compared for the
purpose of enhancing image quality in polarimetric
matched 1mage filtering. Basic principles of the
Polarimetric Matched Image Filter (PMIF) are presented
and by utilizing the now widely used NASA-JPL C-Band
POL-SAR data sets, collected over the San Francisco Bay
area, the PMIF concept, together with various speckle
reduction methods are verified and interpreted. Specific
emphasis 1s placed on demonstrating the efficiency and
usetulness of applying the PMIF method to the optimiza-
tion of image discriminants in POL-SAR image analysis.

1. INTRODUCTION

In POL-SAR image analysis [22, 24, 31, 32, 34, 35, 57,
62, 66, 71, 72, 101, 113-117, 127, 128], one deals with
remotely sensed images obtained through fully coherent
recordings of the electromagnetic vector-wave interroga-
tion with the retlecting surface which requires a sub-
sequent complete interpretation of amplitude, phase and
polarization information in the formulation of the con-
trast optimization algorithms.

POL-SAR 1mage formation was developed - step-by-step
- as an extension of amplitude-only SAR [57,77,79,99]
and amplitude-only plus limited-phase SAR using one
single, more often inappropriately chosen fixed trans-
cerver antenna polarization state. Thus, as a result, only
one single coefficient of the radar cross-section matrix
|0 (AB)] for a specific fixed combination of transmit-ver-
sus-receive polarization states is measured for every res-

olution cell of the raw image measurements, i.e., on a
pixel-by-pixel basis. As a result of this highly limited and
incomplete recording of the electromagnetic vector wave
nature, very essential “vector wave information”, im-
printed 1n the “polarization state transformation proper-
ties” of the scattered-versus-incident wave, 1s lost and a
complete description or recovery of the scattering process
is therefore not possible. The only way in which we can
ensure that complete information on the scattering process
1s retained, 1n order to enable adaptive filtering in an image
post-processing mode, 1s to devise a completely coherent
(snapshot) vector wave measurement approach, i.e., in
addition to complete amplitude and phase information,
also completely coherent polarization information must be
recovered on a pixel-by-pixel basis. For moving target
scenarios, such measurements ought to be executed at
extremely short time intervals well under the decorrelation
periods of moving and vibrating scattering ensembles. For
fixed, stationary scatterers, this was first accomplished in
dual polarization microwave holography (Boerner, Gniss,
Magura, 1974-1978 [11]), where it was demonstrated that
the incoherent superposition of the four scattering cross-

section components (0'ap = | S ap IE) of the dual-polariza-
tion transmit/receive channel provide the complete
“polarization basis (A,B) invariant image” on a pixel-by-
pixel basis, 1.e., the “span image”:

Span{ [S])=|Sanal" +|Sas +|SBa | +|S88 [,

as was shown and demonstrated clearly in [10,11,12]. In
an extension of the polarimetric microwave holographic
principle which does not allow for the complete recovery
of the relative phase scattering matrix on a pixel-by-pixel
basis, especially for moving target scenarios, step-by-step
first quasi-polarimetric amplitude-only (| HH | and
|HV|,|HH |and | VV|,or | VH |and | VV|), then com-
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Fig. 1 - Schematic SAR System Configuration (Airplane with Ground Swath).

plete amplitude-only (|HH]|,|HV|,|VH]|,|VV]|)
polarimetric SAR systems were developed at the NASA
Jet Propulsion Laboratory (JPL), leading to the develop-
ment of the first complete relative phase POL-SAR
polarimeter system. In these complete POL-SAR
polarimeter systems, a sequence of orthogonally polarized
waves 1s transmitted, and the received waves are decom-
posed into two orthogonally (co/cross)-polarized com-
ponents which enter two identical, coherent receiver
channels. Due to the advent of supra-fast orthogonal
polarization state switching and real-time processing dev-
ices, completely coherent polarization diversity in the
receiver is accomplished by coherent transmission polari-
zation diversity, so that the complete, coherent 2x2 Sin-
clair radar scattering matrix [S] or the 4x4 Mueller radar
reflection matrix (separately for the co/cross-polarized
channels: [ M./, | can be recovered on a pixel-by-pixel
basis [34,58,60-65]. Thus, with the advent of these very
sophisticated coherent orthogonal dual-channel polariza-
tion/transceiver POL-SAR collecting devices, complete,
electromagnetic vector wave image information has be-
come available to us but the full potential of which has
neither been fully comprehended nor exhausted.

Since complete scattering matrix information on a pixel-
by-pixel basis can be made available also for the non-sym-
metric general bistatic and non-reciprocal cases, entire
new image post-processing concepts will soon be
developed and applied, which eventually will permit true
optimum separation of desirable scatterer (target) from
undesirable scatterer (clutter) information, and at the same
time, novel, hitherto unthought of speckle reduction
schemes, will be implemented in practical applications.

The fully coherent recording of the electromagnetic vector
wave image information also allows for a sequential step-
by-step elimination of sources of noise and speckle accu-
mulated during the entire 1mage acquisition and storage
process, by applying proper calibration and intermediate,
coherent control signal information. Provided, that the
effective footprint per illuminated scattering scene as well
as the acquisition time per pixel scattering matrix can be
reduced significantly, new methods of reducing incoher-
ent, temporal, and spatial speckle can be derived, and also
improved internal processor noise reduction should be
feasible. Thus, by further advancing the concepts ot POL-
SAR imaging to include motional polarimetric doppler
information on an pixel-by-pixel basis as well, relative
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target motion can be frozen, therefore providing the means
of obtaining almost ideally “clean” images. Instead of
further pursuing the development of such advanced con-
cepts, in the following sections emphasis i1s placed on
introducing polarimetric speckle and clutter reduction
with simultaneous optimization of image contrast proce-
dures on the basis of the currently available data sets.

In order to improve on the image feature-versus-back-
oround clutter-plus-speckle contrast, we are introducing
here the concept of the Polarimetric Matched Image Filter
(PMIF) with the specific goal of optimizing the image
discriminants in POL-SAR 1mage analysis. Therefore,

after introducing the concept of the Polarimetric Matched

Image Filter (PMIF), we will then demonstrate how image
discriminants can be optimized both against background
clutter and speckle.

1.1 What is Speckle - Coherent vs. Partially Polarized
Case

Speckle is seen as a random intensity (amplitude, phase)
distribution which 1s caused by the reflection of some
incident, coherent electromagnetic vector wave (ampli-
tude, phase and polarization) from a rough surface. A
surface 1s considered rough if the heights between its
peaks and valleys differ by at least one wavelength of the
incident radiation (Goodman [45,46], Dainty [28,29]). In
the optical (laser) or microwave (POL-SAR) region, all
natural land and water surfaces tend to be rough, therefore
causing an abundance of (a) depolarization and (b) speckle
in coherent reflected images.

(a) Depolarization effects along a rough surface at micro-
wave frequencies can be attributed to specific geometries
such as linear stalks of plants and trees, roads and build-
ings, coastlines and various geologic and marine features
17,10,23,25,27,34-37,42-44,53,69,73,92,105-110,128-129]
i.e., whenever the index of refraction (dielectric permittiv-
ity) and/or conductivity change abruptly; and so also the
electric surface curvature [39,83,94,100]. These
geometries can be simulated mathematically as dipoles,
corner reflectors, di/tri/tetrahedrals, etc. [115]. Some
prominent post-imaging methods will be mentioned which
are capable of enhancing POL-SAR 1mages. When using
coherent POL-SAR measurement data sets, the "operator’
relating the transmitted and reflected fields is known as
the complete complex-valued 2x2 (Sinclair) scattering
matrix [S] (or its related form of the 4x4 Mueller matrix
[M] for the partially coherent or also partially polarized
cases). Whereas 1n the partially coherent case no assump-
tions about the coherent nature of the incident field can be
made, in the partially polarized case we assume the degree
of polarization together with the state of polarization of

the incident wave to be known. Thus, the incoherent
spatial and temporal nature of the scattering surface prop-
erties contributes to the random depolarization phenome-
non, which in turn is exhibited in the scattered waves and
identified in the form of the Stokes reflection matrix. The
2x2 Sinclair matrix, [S], may, however, be thought to be
a complete characterization of the scatterer at that image
point at one particular frequency, aspect, and for a single
‘point scatterer’, under the assumption of a snapshot
image.

Remark: This approximation may be acceptable, due to
the fact that the individual pixel matrices [S]; are collected
far below the decorrelation time of clutter but not neces-
sarily below the scintillation periods of speckle which
requires further experimental analysis and testing.
Furthermore, the effective footprint of the interrogating
central beam may be considered sufficiently small for
crudely applying a “quasi-point scatterer” approximation
which also requires further extensive analysis.

These coherent pixel scattering matrices consist of com-
plex-valued co-polarization (Co-Pol) and cross-polariza-
tion (X-Pol) elements, expressing the amplitude and phase
by which the scattered surface resolution cell transforms
the incident polarization and depolarizes, 1.¢., alters the
polarization state and the degree of polarization of an
incident plane wave, respectively. Assuming that the de-
gree of polarization remains unchanged, the scattering
matrix [S]1s an excellent starting point for image analysis
[11-22, 63-67, 113-117, 128-129], allowing for mathe-
matical manipulations of amplitude and phase in the com-
plex domain. In fact, without implementing the |S] matrix
approach, optimal 1image pixel post-processing would re-
main rather primitive and restricted.

(b) Speckle can also be seen as a depolarization phenom-
enon; it, however, does not seem to be directly related to
a particular surface geometry or to specific roughness

‘patterns at the region where speckle appears on the image

[29]. Even when using highly coherent, monochromatic
incident radiation, the image acquires a peculiar granular-
ity which does not exhibit any detailed structure or signa-
ture of any specific sort. Because of its random nature and
the great amount of data in the 1image, speckle i1s best
described and treated by first- and second-order statistics.
J.W. Goodman coined the phrase of “a Random Walk of
Phasors in the Complex Plane”, i.e., “the amplitude of
the electric field at a given observation point consists of a
multitude of de-phased contributions from different scat-
tering regions of the rough surface” [28-29,45-46].
Making the assumption that all elementary complex vec-
tors, i.e., the amplitude and phase of each image cell
(pixel), are statistically independent of each other, the
phases are uniformly distributed which implies that the
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surface 1s rough by many times the 2 & radians of the
incident wavelength. It can be shown that average values
of separate ensembles of the real and imaginary parts of
the resultant field have zero means, identical variances,
and that they are uncorrelated [45]. The next step 1s to
show that, given the large number of elementary phasor
contributions, and by applying the Central Limit Theorem
[46, 78, 112] that the real and imaginary parts of the
reflected fields are asymptotically approaching a Gaussian
distribution. It turns out that the joint probability density
function (PDF) of the real and imaginary parts of the field
1s indeed of the circular Gaussian kind for most cases [45].
Hence, speckle seems to be “well-behaved™ in a statistical
sense. Whereas above considerations apply to “spatially
distributed random walk of phasors”, similar considera-
tions can be deduced for temporal scintillations.

Weak Scattering

A useful statistical approach to scattering with non-
Gaussian properties is known as K-distribution. In radar
science, the K-distribution is used as a model for scattering
with a non-uniform distribution of phase due to fluctua-
tions in the target (e.g. motional/orientation, turbulence,
etc.) The non-uniformity of phase implies that phase i1s
biased or correlated. The scattered electric field vector 1s
essentially a two-dimensional vector which “may be rep-
resented as the resultant of a random walk in a plane with
a negative binomial distribution of the number of steps [6].
This distribution takes on the von Mises form

exp (v cos ¢)
J (¢) - 27 IU ('U)

(1a)

where Ip 1s the modified Bessel function of the first kind
and v 1s a parameter representing the limits for the dis-
tribution,

P(p)=1/2m; v—0,
(1b)
P($)=0(9); v—>

Meanwhile, this limited von Mises form of the K-distribu-
tion has been generalized to a random walk in any number
of dimensions [6,55,56,93].

We are only going this far in our introduction to the very
important subject of non-Gaussian scattering which holds
great promises for the explanation and mathematical treat-
ment of numerous scattering phenomena with non-
(Gaussian characteristics also in POL-SAR 1mage analysis.
In summary, regarding speckle in POL-SAR 1magery, we
need to investigate which of the recently developed
methods of speckle reduction produces reliable results and
can be further developed towards automatic speckle re-
duction algorithms and can be used during future remote
sensing missions for the detection of low RCS targets in

severe dynamic background clutter. In Section 2 of this
paper, speckle and noise reduction schemes are presented
from a historic perspective and specific short-comings of
previous non-polarimetric approaches are pointed out as
we go along. Whereas the real and imaginary part statistics
of the individual scattering matrix elements may be “well-
behaved”, it can be shown that the same does not hold true
in general for the four (sixteen) scattering matrix elements
of the Sinclair (Mueller) matrix. For example, it is well
known that for sea-surface backscatter, the HH component
statistics differs significantly from that of the HV, VH, and
V'V statistics [70, 82, 96].

1.2 Basic Concepts of the Polarimetric Matched Image
Filter

The large amount of randomly distributed and mutually
independent data of an image requires that an efficient
mathematical method be used to generate an estimate of
the range of the values. The probability density function,
for instance, takes a data set and determines the distribu-
tion of intensities, for example, which may look like a
bell-shaped curve when plotted. The advantage of group-
ing data statistically lies in the fact that image data ot
ocean, land, vegetation, etc. can be differentiated by their
characteristic probability density functions (PDFs) which
is a useful tool in the classification of terrain types in an
image. Furthermore, this approach in POL-SAR 1mage
analysis i1s further amplified by the observation of the
different scattering matrix elements Sap posing different
PDFs among cach other as well as for different elliptic
polarization bases (AB), e.g., linear, right/left circular or
general elliptical.

1.3 Approaches for Optimization of Image Discrimi-
nants in POL-SAR Image Analysis

[t can be shown that the log gradient dielectric and con-
ductivity components

A*(Ve/e) and E+(V o/0) (2)

of the inhomogeneous vector wave equation are highly
polarization sensitive (Stratton [100]), resulting in strong
polarization transformations of the incident wave which
show up in the polarimetric image evaluation. These
“polarization state transformation” terms of the inhomo-
geneous vector wave equation, identity not only sudden
major transformation changes at discontinuities but also
imply gradual polarization state transformations as a wave
propagates through such an inhomogeneous medium for
which these terms are non-negligible |22, pp. 1105-1117,
124]
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2. METHODS OF SPECKLE REDUCTION

Speckle can be dealt with 1n several ways. One way of
reducing or eliminating speckle 1s by filtering or masking

the image by means of digitized intensity attenuation or
statistical averaging of parts or of the entire 1mage (Sec-
tion 2.1)[8,47,49-51,54,87,90,97,125]. Another method is
to apply principles of probability and communications if
speckle 1s considered noise (Section 2.2), in the sense that
it distorts the actual 1image information [3,80]. A third
method (Section 3) treats speckle as a seemingly random
contribution of residual phasors by all parts of the image.
Speckle may be reduced by finding the maximum power
of the retlected fields in an attempt to optimize the image
for high contrast between terrain types |63-67]. In any case
a priori electromagnetic means of speckle removal must
be applied before any other image restoration 1s applied.

Specifically, Section 2.1 consists of a brief overview of
“traditional” 1image enhancement methods, based on com-
puter-numeric digital image manipulation, which are still
used to improve satellite, medical or industrial 1mages
cosmetically. After determining the range of pixel inten-
sities of the image, specific subranges are selected and

either smoothed or sharpened 1n order to show some
desired visual information. These methods work very well
when showing images of large areas encompassing such
events as oil slicks, weather/ocean current patterns, geo-
logic formations, agricultural/pollution maps, arctic ice
range and medical imaging, etc.

In Section 2.2, an intermittent statistical approach of
speckle reduction, based on polarimetric scattering matrix
manipulations i1s summarized which takes advantage of
complex-valued, coherent polarization data. This ap-
proach 1s intermittent on our way to image manipulation
and classification, based of electromagnetic principles, in
that the span of an image 1s used as an entry point into the
subject, but then 1t 1s treated merely from a statistical
viewpoint, borrowed from electronic communications
theory.

It 1s the intent of this paper to stress these aspects in an
infroductory manner in order to encourage the expert
reader to further advance on these approaches. Although
these methods have merit, it will be shown in Section 3,
that the polarimetric matched image filter (PMIF) ap-
proach 1s more promising from an electromagnetic point
of view and lends itself to some very sophisticated
methods of image manipulation and correction of errors
through computer-based simulation of the physical radar
system.

2.1 Speckle Reduction through Computer-Numeric
Filtering

When image data are manipulated to emphasize specific
details, it frequently happens that the image loses some
quality, 1.e., important visible image features degrade.
Sometimes, extraneous information in the form of noise
may be introduced during any conversion process.

Since the inception of radar (and later on of lidar), many
basic enhancement and more sophisticated image restora-
tion techniques have been developed to compensate for
image degradation and to enhance specific image features.
The majority ot enhancement methods were developed tor
optical and infrared imaging systems (lidar). They consist
of gray scale adjustments of digitized images (1.€., assign-
ing attenuation values to intensities and piece-wise linear
quantization for contrast enhancement), deblurring (i.e.,
deconvolution in the spectral domain) and smoothing (1.¢.,
averaging and weighting of pixels). On a more sophisti-
cated level, image restoration 1s concerned with the em-
phasis of select feature extraction and the simultaneous
suppression of undesirable information 1n the image with
the goal of correcting for a specific degradation process.
Most of the time, the degradation operator 1s unknown or
difficult to define because it may be non-linear, hence
image restoration consists primarily of a trial-and-error
approach. The best restoration method is one which 1s
tunable, 1.¢., in which the enhancement parameters can be
varied continuously as the image 1s being enhanced and
visually evaluated simultaneously [116]. The following
section consists of an overview and introduction to the
clementary methods of image enhancement, followed by
an evaluation of their advantages and short-comings and
some suggestions as to which ones of these fundamental
methods are most suitable for speckle reduction.

2.1.1 Gray Scale Modifications and Transformations

One of the most useful methods 1s gray scale modification
which has two forms, 1.e., gray level correction of in-
dividual pixels or image regions and gray scale transfor-
mation which changes the distribution of the gray level for
the entire 1image [2]. Gray scale transformations involve
histogramming of the original data, whereby spurious data
points are neglected. Hence, pixel brightness is redis-
tributed over a range of brightness values, thus making
desirable (operator-controlled) gray level adjustments. As
for gray level correction, if an image was mapped non-uni-
formly (e.g., due to vignetting of the receiving system),
the picture can be calibrated on a picture of uniform field
of known brightness provided that [90]:

gx,y)=elx,y) flx,y) 3)
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where f(x,y) corresponds to the ideal gray level of a picture
point (Xx,y), and g(x,y) 1s the actual gray level at that point
and the function e(x,y) is a calibration function.

2.1.2 Gray Scale Transformations

Gray scale transformation over the entire 1mage or a
sizable region of the image increases image contrast
148,51,90]. For 1instance, to increase contrast of an image
which has fewer gray levels than the imaging computer 1s
capable of handling, 1.e., the image 1s “underexposed”, the
gray scale can be stretched to encompass the entire allow-
able range. Similarly, if it turns out that most of the picture
elements occupy just a subrange, which means that the
image 1s compressed, a piece-wise linear transformation
stretch of the gray scale interval may be applicable. There-
fore, it 1s possible to stretch selected regions of the gray
scale to enhance 1image details at the cost of compressing
other less desirable regions. This is one method by which
speckle can be reduced, it speckle occurs within a limited
range of intensities.

This contrasting technique of mapping different gray
levels of the picture can also be applied to false coloration
of the image, where ditferent hues are assigned to certain
brightness values or ranges. Colors can greatly enhance
the visibility of details in the 1image.

2.1.3 Sharpening

Averaging over a number of pixels, which corresponds to
an integration operation on the image, tends to blur the
image. Averaging also has a destabilizing effect on higher
frequencies. Differentiation, however, can be used to de-
blur or sharpen the image. Furthermore, high spatial
frequencies should be emphasized in the process of picture
sharpening. If possible, the image should be rid of noise
or speckle patterns before applying any sharpening
methods, because at high trequencies the noise signals
may overpower the image signals. Any attempt of differ-
entiating should be done by means of an 1sotropic linear
derivative operator involving derivatives of even orders
|87]. Isotropy or rotation invariance 1s desirable, because
it should be possible to sharpen blurred edges and lines
going 1n any direction of the image.

2.1.4 The Laplacian Operator

The following linear derivative operator

(4a)

1s also known as a two-dimensional Laplacian. Suppose a
blurred picture results from a diffusion process (e.g. aver-
aging), satisfying the following partial differential equation:

ag 2
=kV
3:-kV'8

(4b)

where g is a function of X,y and t, k is const., and g(x,y,0)
represents the unblurred picture f(x,y). At sequence
t=T >0, g(X,y,t) can be expanded into a Taylor series
centered on t=T, resulting in the following first order term
eXpression

f=g-ktV'g (4c)

Higher order terms are generally 1ignored in order to re-

duce the time it takes to process large 1image arrays. Digital
images may be processed by following the digital analog
to a Laplacian

Vif@i,j)=Vef(i,j)+Vif(i,j)
=[fG+1,)+fG-1,))+f@,j+1)

which 1s the same as

(5a)

£ i) - }1 [FG+1, ) +fG-1,7)+f(ij+1)+f(ij-1)]
' (5b)

where each pixel 1s averaged together with its horizontal
and vertical neighbors. Hence, the digital Laplacian of an
image 1s a method of subtracting a blurred, 1.e., averaged
version of f itself. Other types ot Laplacian-type operators
can be used such as a 3x3 neighborhood Laplacian, con-
sisting of eight horizontal, vertical and diagonal neigh-
bors, or using weighted averages over the neighborhood.

2.1.5 High Emphasis Filtering

Mathematically, high-emphasis filtering corresponds to a
subtraction of the Laplacian from every image point such
that

f.0)-Vfi.])=
FG.D)+81FGD) -5 fG+1.0)+1G=1.))
FG L) +FL 1)+ 1))

(6a)

As a result of this operation, the low frequencies in f are
canceled out while the high frequencies remain intact [90].
Consequently, an addition of a multiple of the difference
operator to f should boost the high frequencies, thus
sharpen the image and enhance edges and lines. This filter
which 1s passed over every picture element of the image,
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analogous to a convolution operation, might look like

1 -1
1 -4 1 or -1 4 -1 (6b)
1 -1

where the first filter reduces the pixel intensity and the
second filter enhances pixel intensity.

Sometimes, high-emphasis filtering 1s used in conjunction
with logarithmic gray scale transformations. This method
reduces shading effects which occur 1n satellite pictures
of planetary bodies, yet it preserves edges and lines in the
image. High-emphasis filtering 1s the most sophisticated
method among computer-numeric approaches of practical
image enhancement and 1s very common 1n satellite and
medical imagery.

2.1.6 Smoothing Operators

Smoothing methods are often used to remove speckly
noise. If not applied properly, however, smoothing has the
tendency of blurring sharp edges and lines. To remove
periodic noise, for instance, a Fourier transform can be
taken of the image and filters can be used to remove the
lines or regions corresponding to speckle in the Fourier
space. The deblurred image is then obtained by taking the
inverse Fourier transform. This can be done by zeroing out
the frequency components related to noise or removing by
interpolation or shifting those noisy frequency segments,
leaving the remaining image intact. If noise 1s multiplica-
tive, however, smoothing in this manner would not be very
successtul since the undesirable frequency components
cannot be 1solated so easily. Noise, occurring in isolated
pixels (salt-and-pepper noise), which is more typical of
speckle in SAR 1mages, could be 1solated by comparing
cach pixel with the intensity levels of its neighbors. A
large difference in intensity between neighboring pixels
might be an indication of random noise (speckle) which i1s
removed by interpolation, i.e., averaging with its neigh-
bors, as described in the previous section. The use of
smoothing methods which are based on weighted aver-
ages, however, 1s not a well-defined scheme of enhancing
the image and as long as the operator has to assign weights
to the filter, such methods would not be suitable for
automation. Here, we also emphasize that without the
availability of the complete incoherent span information
such methods remain dubious.

2.1.7 Point-Wise Averaging

Another class of smoothing methods 1s point-wise averag-
ing which distinguish themselves from the previous one
in that they do not depend on the identification and re-

moval of noise [90]. Instead, a scheme 1s used to weaken
the impact of noise on the image by averaging neighboring
pixel values. Averaging, however, tends to blur the picture
and degrades details of lines and edges. As for noise,
however, averaging of pixel values decreases the ampli-
tude of speckly noise tluctuations, thus a delicate com-
promise is reached when using this method. The method
of averaging works best if several independent copies are
made of the same blurred 1image for which noise can be
reduced by point-wise averaging the same pixels in the
copies, where

f(xay)= %\
/

Y filx,y) (7)
i1

The method of point-wise averaging is also used for 1m-
ages which have symmetry or periodic noise structures.
One great disadvantage of the smoothing methods de-
scribed so far 1s that averaging is done across lines and
edges. To avoid this, an edge or line detector might be used
first followed by a smoothing operator which skips the
lines and edges. A more refined edge detector would be
one which performs a directional averaging, 1.e., averag-
ing and enhancing lines and edges by themselves but
1ignoring nearby pixels.

Another useful averaging method 1s called median or rank
filtering, whereby each pixel value is replaced by the
median of the values of its neighborhood. This method
eliminates spikes and flattens oscillations which are the
most common occurrences of speckle in images.

2.1.8 Non-Linear Filtering

Other filtering approaches can be generalized 1nto a class
of non-linear filters. These filters are different from the
previously discussed filters since they do not behave in a
linear tashion:

f(imagel + image2) = f (imagel) + f (image2) (8)

where f is the filtering function. The most common non-
linear filter 1s the median filter which replaces the center
pixel value with the median of the neighborhood pixels
around the center pixel [92]. This filter is non-linear and
changes the statistics of the original image (mean and
variance of the pixel values) but does not introduce any
new pixel intensities in the filtered image, unlike linear
filters. Median filters are reasonably effective on speckle
noise since speckle tends to produce very large and very
small pixel values which are eliminated using the median
operation. Other non-linear filters include rank filters
which are a generalization of medians using histograms of
the neighboring pixels to determine a filtered pixel value
and several non-linear 1image restoration techniques.
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2.1.9 Section Summary: Need for a Different Approach

We have reviewed various standard computer-numerical
image enhancement and speckle reduction methods which
we consider pertinent to POL-SAR 1mage contrast analy-
sis. However, we have not attempted to exhaust all
possible methods but rather wished to emphasize their
incompleteness and that we need to look for other more
complete electromagnetic vector wave approaches.

The most prominent short-coming of these image en-
hancement methods are that they require human interven-
tion for two reasons: visual selection of areas to be
enhanced by means of colors, gray-scale, etc. and human
interpretation of the visual information, since no algo-
rithms are applied to make any decisions on the image
elements. In order to steer toward the implementation of
more sound approaches, we need to take recourse to basic
electromagnetic theory and we need to deliberate on how
electromagnetic vector waves interact with distributed
scattering centers, etc., and then form the scattered imag-
ing wave components. In a next step, in a truly electro-
magnetic approach, we then need to investigate in depth
the entire process of vector/tensor image formation.
Modern POL-SAR image analysis provides such a new
approach and it consists of complex-valued, coherent
polarization data, giving rise to amplitude and phase
manipulations of the images. As a rule, POL-SAR data are
provided in the form of 2x2 Sinclair or 4x4 Mueller
scattering matrices which contain all the polarization-
transforming signature parameters on a pixel-by-pixel
basis, 1.e., the effects due to a surface which 1n some
manner reflects an incident electromagnetic plane wave.
Hence, POL-SAR data which contain a wealth of addi-
tional useful information about scanned terrain, lend
themselves to a more advanced physico-mathematical
treatment of the scattering elements which open up en-
tirely new avenues for computer-enhanced and automatic
computer-based image recognition.

It is the intent of this paper to stress these aspects in an
introductory manner in order to encourage the expert
reader to further advance and expand on these ap-
proaches. However, before introducing the concepts of
a truly polarimetric matched image filter approach,
the intermittent statistical approach of speckle reduc-
tion based on polarimetric scattering matrix manipu-
lations is summarized in the next Section [120].

2.2 Speckle Reduction through Statistical Averaging of
the Scattering Matrix Elements

Having recovered the complete vector wave information
on the image on a pixel-by-pixel basis instead of being

given just one radar cross-section or the three radar cross-
sections Oyy , Oyy , and Oy = Oyy, We are now given four
complex elements (Suv, W, v =12) of the scattering
matrix [S] to work with which has certainly increased the
degree of freedom in terms of image manipulation and
thus may or also may not assist in possible speckle reduc-
tion, if properly utilized. Thus, with the advent of
complete polarimetric high-resolution coherent radar and
SAR imaging systems, there now exists the possibility of
optimally processing the coherent scattering matrix via
individual and clustered pixel manipulation in such a way
as to reduce the speckle content of specific SAR 1mage
regions.

In a paper by Boerner [13] it was demonstrated that span
images are invariant to polarization basis transformation,
and that the span images appear to the eye as having less
speckle than usual single polarization SAR images which
is consistent with the fact that the human eye processes
images in a mostly incoherent manner. In this case, each
pixel of a scan 1mage 1s constructed from the incoherent
superimposition of the four complex scattering matrix
S'BA |,
and opg=|S'ss|" which reduce to three elements in the
monostatic reciprocal case, where $'4g = §'pa’ so that

elements o4 =|Saa |, Oap=|SaB |, OB =

Span{[S(AB =BA)]|=|Su > +2|Sas [ +| 85 |
(9a)

furthermore, it is shown 1n [20,21] that

DE‘I{ |S (AB = BA) ] } = 5448 BB — (Srgﬂ)z - gHHSW“(SHV)Z
(9b)

and Kennaugh [59] introduced the ’effective radar cross-
section (ECS)’ also denoted as the ’polarimetric excess’:

0=(SPAN{[S]}+2|D€I{[S]H) (9¢)

which are important invariants in radar polarimetry [12,
14-22] and especially in POL-SAR imaging |21].
Next, to this non-coherent superposition of the three

polarimetric images for single elements (| Spy|* image,

| Syv|* image, and | Sz | image), there may exist other
methods of polarimetrically minimizing speckle by incor-
porating complete polarimetric information. In order to
determine such possible methods, a covariance matrix
method is introduced next, before proposing the complete,
coherent polarimetric operator of Kennaugh [58,59] and
Huynen’s polarization concept [52] for implementation.
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2.2.1 The Polarimetric Feature Vectors and the
Polarimetric Covariance Matrix Formulation

Utilizing these invariants (9a-c), first introduced into
polarimetric microwave imaging in [14-16], the concept
of the polarimetric feature vector and the corresponding
polarimetric covariance matrix [X] are introduced. At each
instantaneous state of time any stochastic target is
completely described by a corresponding scattering
matrix [S’(AB)] or equivalently by a polarimetric feature
vector & (AB). For the general non-reciprocal and/or
bistatic case that scattering matrix [S’(AB)] is non-sym-
metric, 1.€., $'aB = S'pa, defining a four-dimensional fea-
ture vector

T

Y (AB = BA) = | S"44 8'4B S'BA S’BB} (10a)

satisfying the normality condition which satisfies inherent
energy and minimum phase conservation principles,
where the norm of this vector satisfies the span-invariant

||| |"=Span{[S(AB = BA) ] | =|S'aa [ +|Sas]* +

+ |S'Bal” + |S"58|" (10b)

For the reciprocal monostatic (symmetric matrix) case,
mainly considered here, the four-dimensional
polarimetric feature vector mentioned above reduces to a
three-dimensional feature vector because of S'ag =584,
where

T (AB =BA) ={S'aaVZ S'aS's8 | (11a)

satisfying the pertinent normality conditions

11l =Span{[ S (AB =BA) ]| =|Saa| + 2|Sas|” + |Ses|”
(11b)

under a unitary basis transforming [21].

Note, that in the literature, formulations neglecting the
multiplicative factor V2 exist [80] which are erroneous,
because these formulations violate the energy and min-
imum phase conservation principles [20-22].

The corresponding correct polarimetric covariance
matrices, [2(AB)] and [Z(HV)], for the symmetric case, in
the (AB) and (HV) bases, respectively, are then defined
for the instantaneous state, respectively, by

[ Sas
[Z(AB)] = GAB)T (AB)" = | V2 S'as |(S'ia VZ S'35S'55) =
S' BB

K ) (12a)

‘S’AA |2 V2 S'44 S48 S'aa S'BB
= | V2S'a8Sas 2|Sas|" V2 S'45S'EB
S's8S4a V2 S'seSas | S8 [

and

[ Sur )
[(ZHWV)]=QHV)SHV)" = | V2Suv (SHV2 SivSiv )=
Svv
\ /

1

|.5'mar|2 V2 S Suv  Suu Swv
V2 SuvSier 2| Suv|® V2 Suv Siv
SyvSur V2 SwSiv | S|

L 4

|

The 3x3 unitary transformation matrix [T] for transform-
ing

T (AB)=[T] G (HV)
and

[Z@AB)]=[T][ZHW][TT

1s then given, according to the definition of [T] and [U] of
(97a,b) by

(12b)

1

[T(p)]=1+pp* (12c)
[ ezf Py V2 0 ezfll’l pz EZI Y
—V2 p" e’le +P4) (1-pp*) e}('lP‘1+1P4] V2 p eJ‘(lP|+1P4)
L p*Z 62;1p4 VL) p* €2j’l|J4 €2Jw4

where [T () ][ T (p)]* =[] and | Det{[T(p)}|=1 as
1s shown 1n [21].

2.2.2 Properties of the Polarimetric Covariance Fea-
ture Vector & and Corresponding Covariance Matrix
| 2 ] for the Stochastic Monostatic Reciprocal (Sym-
metric) Case.

The recent availability of advanced coherent dual polari-
zation radar systems allowing the decomposition of the
received wave 1nto two orthogonal components (co-polar
and cross-polar transceiver channels), facilitated the intro-
duction of the polarimetric feature vector & of (12b) for
interpreting the scattering behavior of reciprocal random
targets (S'ap = §'pa). Utilizing the scattering matrix invar-
iances of (10a/b), the polarimetric feature vector & was
introduced subject to the normality condition (12c¢), per-
mitting the formulation of the covariance matrix [ X |
according to (13a/b) also for the stochastic symmetric case
with < .. > = denoting either appropriate ensemble or time
averaging of stochastic variables [20]

[3(4B)] = (13a)

{|S’AA‘2> V2 <S'4a 84> <844 S'pp > ]
V2 < S'aB S"44 > 2<|SABF> V2 <S'45 S5 >
V2 <S'Bp S4B >

<|S'BB |2:>-

| < S'8B S A4 >



228

EARSelL. ADVANCES IN REMOTE SENSING, Vol. 2, No. 1 -1, 1993

[2(HV) ] = (13b)

[ <‘SHH|2> 2 <Suy Siv> < Sy Svv > -
V2 < Syv Sty > 2{‘Smf|2> V2 < Syv Sty >
V2 < Svv Skv >

< Svv Sty > <‘Swl2:>

3

These polarimetric covariance matrices are directly re-
lated to the statistical properties of the scattering matrix
elements and this proper formulation of [X] 1s also con-
sistent with the Stokes reflection matrix decomposition
into its co-polar matrix [Mc] and cross-polar matrix [Mx]
as introduced in [9]. Following the approach of [6] and
[11] of utilizing the reduced transformation matrix
[4,6,11] with ¢" =0 and y* =0, equation (14a) may be
reformulated as [21]

T AB)=T(p)=[T(p) ] T (HV) (14a)
and
[2(AB)]=[2(p)]=<T(p) Q" (p)>=
=[T(P)1<QHV)THV)>[T(p)] (14b)
with
| [ 1 \/_2—[) p2 1
[T(@)]=—|[-VZp (1-pp)V2 ¢ (14c)
l+pp p*z _V2p' 1

where Det [ [T (p)]}=1and [T (p)1[T(p)]" =[1].
The particular form of [Z (AB)] in (24) allows a reformu-
lation in terms of the relevant normalized polarimetric
co/cross-channel power expressions, P.(p) and Py (p),
along the diagonal and the off-diagonal co-cross-polar-
channel correlation (relative co-cross-polarization phase)
expressions, R. (p) and Ry (p), for the case of transmitting
polarization state A and receiving B; whereas, for revised
order of transmitting B and receiving A, the corresponding
“orthogonal” expressions are denoted by
P (p), Px(p)=Px(p)and P¢ (p) = Rc (p) and Px (p),
where [20]

P.(p) V2ZR.(p) Rc(p)
[Z2(P)]=|-V2ZRe(p) 2Px(p) VZR:(p)
R.(p)* V2 R:(p) P.(p)

L d

(15a)

and since p p° = -1, and the covariance matrix is Her-
mitian, we find

-E(p=-—1; = (15b)
o\ P
P. _ 2 ,F
P R ) £ R ()
P VIR (p)" P p
- p*z 2'Pl(p) ;E'\/iR (p)*
LRE * i \/ZRX p* '

satisfying the following orthogonality relations

Pc - . =Pc (p) (15C)
\ P
1
Rx(—* - | R (p) | (15d)
P
and symmetry relations
\
Puf -] =Pe(p) (15¢)
P
1 A
Re| ——; H=lRﬂ(p)| (151)
\ P

Using above expressions, the stochasticity coefficients,
defined in (17¢) to (17¢), may be reformulated as [21]

uaB (P) = Ry (p) | s
Pe (p) Px () |
and
(P -P@) P +aR@P)
po P { Pe(p) + Px(p) | (15h)
with

0=|ws(P)|sqas(p)1=1.

As summarized by Liineburg et al. [74] and in [21], the
covariance matrix [2] 1s Hermitian and positive semi-de-
finite (three real diagonal power terms and three complex
cross-correlations) [44] and thus possesses three real, non-
negative eigenvalues 0 < v; = v2 < v3 corresponding to a
given matrix [2] or equivalently [M], 1e., vi ([M], 1 =
1,2,3), where it can be shown that

0= vi= mingP; (p)= Pc (HV) = max,P(p)s v3 < | ‘ﬁ(HV)‘ ‘2
(16a)

and similar inequalities hold for P. and Px. A succinct
interpretation of the target invariant eigenvalues v; (1,2,3)

of the covariance matrix on random target polarimetric
backscattering features is summarized in |20,71], showing
that the smallest eigenvalue v; indicates the degree of

randomness. For a deterministic target, with the covari-
ance matrix defined by (12) as [ Z (HV) = Q (HV) Qr (HV),
one obtains by involving a spectral theorem of matrix
algebra [44] that vi=v2=0andvs=|| QT HV)|| for
which true null polarization states pcn1 2 exist [21,74]. The
eigenvalue difference A v = (Vmax — Vmin) = (V3 — v1) of ex-
tremal covariance matrix eigenvalues determines the
range in which the mean power return P (p) and 2P (p)

can be varied by polarimetric transceiver antenna adjust-
ments, where 1n particular
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Trace{[E(AB)]}=Tmce{[E(HV)]}=
=Tmce{-::§>§>+:r}= <:Tmce{§>§—2)+}>=
<|]Q)‘|2>=<Spcm[[S]}:>=<\SAA|2:=-=

=+2{‘SABI2}+<ISBB|2>=

2+<|SVV‘23"=

Y+ v3([Z])= invariant

<|Su "> +2<|Sav
=vi([Z])+v2([Z]

i

(16b)

Additionally, the span of the covariance matrix [X] is also
an invariant [44], where

3

Span { [ 2] } = 2 Vi = invariant (16¢)
i=1

and so 1s the ratio of the span versus the trace of the
covariance matrix |X] an invariant such that the ’covari-
ance matrix invariance ratio (cmir)’ may be defined as

[21]
3 \1/2
>
emir = Span{[Z1D* _ Gpan{[2]1))* \""! ] _
Tmce{[E]} Tmce{[E]} 5
S
i=1
= [nvariant (16d)

In POL-RAD/SAR signal and image processing ’cmir’
plays a major role specifically as a measure (standard) for
speckle reduction.

Similar definitions are used to derive an optimal image
from the complex elements HH, HV, and VV of [S]
specifically by MIT-LL/EML group [80] for the reciprocal
backscattering case. If, for instance, the ratio of the stand-
ard deviation 1s taken as a measure of image optimization,
i.e., of speckle reduction, such that

S st dev.{y}

M Eiy]

(17a)

where the random variable y denotes pixel intensity, then
the random variable y for each image element (pixel) is
given by

y=X7[C]1X (17b)

where the 3x3 matrix [C] was formulated to be Hermitian
symmetric and positive definite and is called the Optimal
Weighting Matrix. The determinant of the elements C;s of
|C|] can be associated by those of the 3x3 Covariance
Matrix |Z] of (25) which requires further subtle analysis.
This eigenvalue problem needs to be solved for pixel
intensities of a given image having the minimum possible
standard deviation-to-mean ratio.

In order to determine the Optimal Weighting Matrix [C]
(i.e., the matrix that results in an image whose pixel
intensities have a minimum possible standard deviation-

to-mean ratio), the following statistical methods can be
used:

3

E{y}=Tr(EC[C])=EM

i=1

(17¢)

Var{y}=Tr(Ec[C])2=i-§lk;?

where A1, A2, A3 are the eigenvalues of the matrix
2¢ [ C ]. Then the ratio becomes

VD32

S o 1
et (17d)

2,

1=1

Therefore, the optimal weighting matrix [C] is one that
yields eigenvalues A; , A2 , A3 that minimize the s/m ratio
and 1t provides a close affinity with the definition of ’cmir’
given by (16c¢).

These covariance matrix approaches of the MIT-LL/EML
groups, when corrected to satisfy basic principles of
energy conservation, as shown by Liineburg et al. [74] and
Boerner et al. [21], may provide a satisfactory method
which incorporates both solutions to Maxwell’s equations
as well as rigorous electromagnetic/statistical principles
developed in communications, estimation and signal de-
tection theory |45]. It 1s 1nteresting to note that in the
rigorous and exact (corrected) covariance matrix ap-
proach, presented and developed by Liineburg et al. [74]
and Boerner et al. [21], which is consistent with the
optimization procedures for determining the Kennaugh
and Huynen target characteristic polarization state theo-
ries [20], an expression similar to (16) is obtained which
related the span versus trace to the correctly defined
‘'cmir’, given by (26d), where v; are the eigenvalues of [Z].
Because polarimetric radar theory 1s based on the exact
Maxwell equations formulation, instead of only pursuing
statistical 1image processing methods, a more rigorous
basic approach is still required.

2.3 Optimal Speckle Reduction vs. Image Discrimina-
tion

A comparison of scalar filtering methods, the statistical

standard deviation/mean method and the polarization
matched filter method.
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2.3.1 Speckle Reduction through Filtering

Image filters are scalar (1.e. not polarimetric or complex-
valued) enhancement methods for digital images which
are used for pattern recognition, smoothing, sharpening
and weighting of digital image points [4,5,75,76]. A typi-
cal image filter of this type applies a weight operator to
every pixel of an image .area in order to emphasize or
suppress certain information. As a rule, selected filters are
chosen by the users, based on their visual preferences and
ability to interpret the optical information. This trial-and-
error approach does not lend itself tc automation, espe-
cially when dealing with such complex phenomena as
speckle or periodic noise. Smoothing, 1.e. Fourier trans-
forming, is one of the most common methods used to
remove periodic noise or speckle, if it can be 1solated and
canceled out in the Fourier domain [30,83,84]. If noise is
multiplicative (homomorphic), however, undesirable
frequency components cannot be i1solated so easily. In any
event, speckle reduction through filtering requires a great
deal of interactive intervention by a user.

2.3.2 Speckle Reduction through Optimal Detection Per-
formance

Given the large number of data (pixels) in an image and
assuming that their random distribution is approximately
Gaussian, the following methods have been developed to
deal with complex-valued POL-SAR image data in the
form of the complex scattering matrix | S| or 1ts associated
Mueller matrix [M].

The ratio of the standard deviation versus the mean 1s
taken as a measure of image optimization, i.e. speckle
reduction. An optimal weighting matrix 1s applied to every
pixel to minimize the standard deviation/mean ratio.

2.3.3 Speckle Reduction through the Polarimetric
Matched Filter Method

In this method the approach i1s taken, that poor image
quality, including noise and speckle, is related to a mis-
match between the polarization states of the sending and
receiving antennas. The complex 1image data are statisti-
cally evaluated and the 'receiving antenna’ 1S mathemati-
cally fine-tuned (i.e. rotated) which may results in an
increase 1n image contrast between different regions of
reflectivity (roughness of terrain such as ocean, buildings,
and vegetated terrain). Another major benefit of this
method 1s a reduction in noise and speckle which either
disappears when the receiving or transmitting antenna 1is
rotated to a different polarization state or can be identified

by comparing and subtracting two of the same images,
received at different polarization states.

2.3.4 Usefulness of these Methods in Automated Applica-
tions

- Application of well-formulated, advanced mathematical
treatment for image enhancement, pattern recognition,
computer-based image evaluation;

- Data are prepared for image evaluation through proper
histogramming, simplifying subsequent computer-pro-
cessing tasks and resulting in verifiable, not subjective
outcomes.

- In the PMIF method, for instance, since a rotation of the
receiving or transmitting antennas can be simuiated elec-
tronically, incidents of measurement errors due to equip-
ment faults, irregularities or deviations from original
flight path (if it needs to be flown again), etc. are reduced
to a minimum.

- Characteristic signatures of specific surface structures or
events (such as ocean, buildings, vegetated areas,
moving objects, etc.) are easily 1dentified without the
need of human interpretation.

2.4 Summary

So far, we have presented two useful groups ot methods
of image enhancement and speckle reduction, namely the
widely used “classical” computer-numerical 1mage en-
hancement methods of section 2.1, and a speckle and noise
suppression method through statistical averaging of the
scattering matrix elements in section 2.2. Although these
methods offer some speckle reduction and a limited possi-
bility of automation, we are interested in this paper on a
new approach in POL-SAR image analysis which analyses
the given complex-valued, coherent polarization data
from a more desirable viewpoint which comes closer to
electromagnetic vector wave theory.

Since the POL-SAR data are provided in the 2x2 Sinclair
or 4x4 Mueller scattering matrix format which contains all
the polarization transformation information of the re-
flected EM wave after its interaction with terrain/clutter.
In the following PMIF method which was developed by
Boerner, Kostinski, James et al. [16-22,63-67], the polari-
zation orientations of the receiving or transmitting anten-
nas of the POL-SAR system are simulated in the computer
and matched polarimetrically to a given data set in order
to enhance the features of an image and to reduce un-
wanted noise and speckle, among other things.
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3. A FIRST ORDER POLARIZATION ADJUST-
MENT PROCEDURE FOR SAR IMAGERY

3.1 Inclusion of Polarization Information in SAR Im-
ages

Polarization-agile SAR provides coherent magnitude and
phase data of the co- and cross-polarized scattering matrix
elements on a pixel-by-pixel basis, 1.e. every pixel of the
image consists of eight unique parameters. Since various
terrains or targets respond to one polarization state more
than to others, an incident polarization could be chosen to
enhance the response of one type of terrain (target) while
suppressing, i.e. not using a preferred polarization state,
for objects or background within the image region.
Furthermore, by tuning the receiver antenna polarization
state such that the incoming scattered wave can either be
suppressed or completely received by properly matching
the signals during image processing.

One method which will accomplish this task 1s called the
Polarization Matched Image Filter (PMIF). The PMIF has

the following characteristics:

- it offers the freedom of changing the transmitted or
received polarization states in a post-processing mode,
assuming that the scattering matrix elements are
measured and calibrated correctly, 1.e., are pure target-
characteristic parameters and will not depend on antenna
polarization characteristics, propagation path distor-
tions, etc;

- the PMIF can be used as an adjustable tuner (filter) to
transmit or receive a desirable polarization which will
enhance a specific target feature such as ships or other
man-made objects or ocean wave patterns, etc., in an
adaptive post-processing mode. Optimal performance of
the PMIF is based on a statistical evaluation prior to the
imaging/graphics process. The PMIF method described
here reduces human intervention during the decision
process which is a first step toward automation; and it
also allows for complete polarimetric matching to a
known desirable scatterer (target) versus undesirable
scatterers (targets), where the scattering matrix can be
modelled in advance; thus rendering the “Polarimetric
Matched Filtering” method feasible.

This approach was first proposed by Boerner [13] and a
feasibility study was conducted at Honeywell DSD, Twin
Cities, MS during 1982-86, and then the approach was
further pursued within UIC-EECS/CL [60-64].

3.2 The Limited Polarization Matched Image Filter
Approach Using [G]

A polarimetric matched filter technique [63-67] was
developed to increase image contrast between terrain
classes and to reduce speckle by readjusting transmitting
and receiving antennas. This polarization matched filter
technique conducts a search for an optimal desirable
(statistically most popular) polarization state of an image
patch, i.e. finding such transmitting and receiving polari-
zations that the received power i1s at a maximum, where
P=|V'VP=(h "ER) (h 'Ex), where V stands for the
voltage at the receiving antenna as a function of transmit-
ter/target/receiver polarizations and i is the antenna
height (i.e. the polarization state of receiving antenna

when transmitting). Hence, the purpose of this procedure
is to determine such E7 and 7, that the voltage equation

Vuh "Ep=k ' [5]1E;: (18)

is optimal for a given [S], subject to the constraints and
||Z||=|| E7||=1 (which actually implies *norm’-aver-
aging in the sense of gray-scale normalization).

3.3 The Limited Power Match Procedure of the Graves
Power Matrix [G]: -

The Three-Stage Procedure (TSP)
The TSP uses the scattering matrix of a target (pixel) and
calculates the received power, 1.e. Py of the scattered wave

= - S . . .
is Ex FR : = ( )T — Hermitian conjugate. Hence,

Pw=FEx En=([S]E;) [S|Er=E ' [S)' [S|Er=E7 [ G | E7
(19)

assuming that Eg = [ S | E7, where * implies the transpose

of the argument.
Since the complex Graves power matrix [G] 1s defined as

[S1°[S ], which is a Hermitian matrix for any [S], it is of
interest to maximize Py to find the “best” E7 for a given
target. The form containing [G] is known as a positive

definite matrix which 1s defined as xTé x > 0 for all non-
zero vectors x, with x; being the corresponding unit eigen-

vector, where

[A]x=hxandx  [A]lxi=xi A Nxi=Mh  (20)

—“"}Tﬁ

Since x; © x; = 1 and the quantity X! [A ]x; =\ is a posi-
tive eigenvalue. Assuming that all A;>0, then all
x F[A]x > 0.

Also, the determinant of any matrix is the product of its
eigenvalues, so that
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Det|A]l=MMA ... ;>0 (21a)
and the trace i1s the summation of those elements
tr[A]l=M+M+...A,>0 (21b)

[A]x= A X is the fundamental equation for the eigen-
value A and the eigenvector x. It is non-linear, because it
involves the.product of both unknowns A and x. Finding

A would mean that the equation with just the vector x~ ERopt =[S ] ET.opt
becomes linear. Furthermore, if A x_ is replaced by A1 JT:

then
[A]lx =A[I]xor([A]-A[I])Xx =0 (22)

The final step of this mathematical development involves
the use of the Rayleigh quotient

—>7 —
R(x)=" ;,[.ff]f, (23)

because solving [A | X=AX is equivalent to minimizing
R(x). Applied to the power expression of Hermitian form

x[Glx/x % (24)

and assuming that the eigenvalues are real and orthonor-
mal, the following two equations (18a,b) can be used to
find the eigenvalues:

Der{ 1G] } =g1180n—-812821=MA2 = Det{ N }Dﬁ't{ [S]* ]
(25)

r{[G])=gugn=M+r=Span{[S]}, (26)

with 0p = Span { | S ] } + 2 \Det{ [ S ] } representing the
effective cross-section, oo, of a radar target according to
Kennaugh [59].

After substituting and rearranging,

Det{[G]l=M[tr[[G]]]1-M\ (27)

and solving for A gives:
ir([G]}=[(tr|[G1})-4det{[G]]]”

LS I Ca S O S

which are the eigenvalues of interest here purposefully
expressed in terms of the intrinsic invariants, the Span

{[S]} and Det {[S]}. Using these eigenvalues, A17 in the

power equation, the extremum is obtained if the vector,
E7 satisfies the following eigenvalue equation:

{[G1-N[1]}Erep=0 (29)

This eigenvector, F},GP,;, corresponding to the greatest
power flux density of the transmitted field. The eigenvec-
tor, found by substituting the smaller eigenvalue, corre-
sponds to the lowest power flux density of the transmitted
field and 1s orthogonal due to the fact that [G] is hermitian.

The second eigenvector can also be found by using the
orthogonality condition

— —>

Stage 2 of the TSP uses the eigenvectors such that the
power of the scattered wave 1s maximized which 1s done
by simply substituting E7,, into the equation:

(31)

Generally, Egopr # ETope since [S] [S]=[S][S] ex-
cept for normal matrices [S] which, however, are domi-
nant.

The third stage of the TSP involves an adjustment of the
receiver polarization to match the polarization state of the
scattered wave. Here, the notion of antenna height plays
the role of adjusting the receiving antenna to receive
maximum scattered power by taking into consideration
the corresponding transmit polarization it would have had
to use as a transmitting antenna, such that:

——w E}}{* = [ SJ E;*ﬂpt

h= or hopt = ’ 32
1B 1 1118 Brom | 2

where, || || corresponds to the norm and the complex

conjugation suggests the reversal of the sense of rotation
of the polarization ellipse upon scattering, which 1s signit-
icant in terms of polarization matching the antennas. Note,
that a complete polarization mismatch can be found as
well which i1s quite useful when wanting to eliminate
certain prominent polarization states while enhancing
others, e.g., reject the most “popular” ocean clutter polari-
zation state of an ocean 1mage patch in order to enhance
non-ocean-like objects in that patch such as one with
ships. Therefore, a complete polarization match i1s accom-

plished by choosing & = E;* and a mismatch requires that

V=h TeEg=0. However, by inflicting the complex con-
jugated matching condition, the degree of freedom of
polarimetrically adjusting the image information is re-
duced substantially; and therefore, in the next Section 3.4
the ”complete coherent polarization fork operator ap-
proach is presented [19]. |

The following chart (Fig. 3.1) and Fig. 3.2 show the TSP
procedure in the form of a flow chart where the arrows
point out the sequence of events and Figs 3.2a, b, ¢ show
the results.

3.4 PMIF Application to the CV 990 SAR Data Set -
Results of PMIF Processing

The three images of Figure 3.2 show how the PMIF
method suppresses unwanted ocean clutter by increasing
the contrast between ocean-like and city-like image fea-
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o E_H(peak =0 L s

for city and if
h parallel to Eq

Fig. 3.1 - Flow Chart PMIF with Applications to Ocean/City Contrasting.

tures in terms of their most favorable polarizations. The
HH-magnitude and span images show a lot of speckle and
ships in the ocean cannot be differentiated easily from
ocean clutter. The following two PDFs show the joint
distributions of optimal polarizations for the selected
ocean and city regions. The eigenvectors, which were
computed over the ocean and city regions, according to
step 1 of the PMIF, were histogrammed 1n their ellipticity
and tilt parameters. The eigenvectors of the ocean region
correspond to minimization of the energy density in the
reflected field. It can be seen that the majority of backscat-
tered energy is received at O ellipticity and 90° tilt, while
the city region has peaks at the same ellipticity but tilts at
90° as well as 0°. Hence, the polarization ellipse with
ellipticity of 0° and tilt of 0° will mismatch the ocean but
match the city so that city-like, 1.e. man-made angular
structures, will be contrasted strongly against the ocean.
It should be noted that the proper polarization adjustment
of the filter depends primarily on the correct selection of
the tilt value since the range of the ellipticity is quite
narrow. This sensitivity to tilt, 1.e. phase, however, makes
this procedure extremely vulnerable to phase and calibra-
tion errors during measurements [118].

4. THE GENERALIZED POLARIMETRIC
MATCHED IMAGE FILTER [123]

With this method all existing characteristic states can be
determined for which the radar receiver obtains maxi-
mum/minimum power scattered back from the targets and
for which optimum polarization phase (0) instabilities
may occur (21, 118, 123-125]. The receiver power, ex-
pressed as

Pr=|Vr["= VR V& (33)

can be rewritten as

P=V=|Er "[S)eV; e=E/||E]|=Er "IS1er [
(34)

where (') represents the reference to any new basis (AB)
which 1s obtained after the unitary transformation from the
original basis (HV) [1,26,63,123-125].

In mathematics, the maximum and minimum of a function
can be found at the critical points of the function. Here,
we apply the critical point method to the power function
(40). A more direct way of doing so is by diagonalizing
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Fig. 3.2 - Comparison between: (a) HH-Magnitude, (b) Span, and

(c) PMIF Image.
the scattering matrix [S] in function (40) by implementing : ' Saa 0] [AMmO]
AB) | = ; = =1 37
the unitary transformation, i.e., let [57(AB) ] 0 SB» L 0 A2 [5d] (37)
S an S'aB ; ' ith
(8" (AB)] = | & [ = [UT [P vy @s)
5’54 '8 Sve Svv , xy— 1 2 2j W
y T o : A =544 (p1) = (1+p1p1) (Su+2p1 Sav+p1 Syy) €7 7'=
where Sgv = Svg and Sap =Spa for the monostatic scat- = | M| o (38a)
tering case [19,122].
To diagonalize that scattering matrix [ S’ (AB) |, we let :
v / %\— | & * 27 W,
Sas =0 and find the diagonalization factor [1,122] p12as: ~ 22=5'88 (P1) = (14p1 p1)™ " (P17 Sur+2p1 Spv+Svy) €7 ™=
| =| A2 | € ® 38b
_—Bi\/Bz—MC_ ejal,z 36 I ‘ ( )
P12 = A =| P12 (36) " The function of the power return to the co-pol and cross-

pol channels of the receiver are determined from the

where * * . : bilinear form (40) to become:
A =Spn Suv+Sav Sw,B=|Suu| - |Sw| ,C=-A (1) For the tunction of the power returned to the cross-pol

Therefore, that scattering matrix 1s in diagonal form channel (Eg = E7)
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Po=|Vil"=| R [SallW [P=(1+p p") (39)
(‘}ul‘zpff)ﬂ:—)\l7\.29!$2—7\#1=}bzpr2+|k2|2pIpr*) V

where p’ 1s the polarization ratio of the receiver in the new
basis. The critical points are some p’ s with the first deriva-

tive of P, with respect to p’ and p’” vanishes. These critical
points, found in function Py, are:

0'xn1=0 (40a)

prxnl = 0 (40b)
TN

0 ml2 = % i ); }\-2 — e g (2v +/2) (40c)
\ 1 A2 b
s\

p’xSI,Z =X 1 : = X eji_.’v (40d)
}\.1 }\,2 )

(ii) For the function of the power returned to the co-pol

channel (Eg = E7 )

Pe=| V" =R [Sa]k ['=(1+p p") " (41)
2 k gk 2 kA g2 2 42 %2
(MP+MMp " "+hhp "+ |2 p " p" )
the critical points are determined from —
P et =P x1 =0, Pemi=p0z=0, (42a,b)  Fig. 4.1a - Parametric presentation of the polarization ellipse.

72

( .
Plentz=%| - %51 + [ 2] ¢ (2 +/2) (42¢)
\ Ao | Ao I

Note, that the following conditions are satisfied [122]

p,xﬂl pr;nZ =—1 (433)
pr.t:ml Pr;nz =—1 (43b) ( Vertikol )
prxsl pf;.ﬂ =-1 (430)

that means that not only p'y,1 and p’y2 but also p'ymi émd
P xm2 are orthogonal and so are p'x1 and p'xs2. l E le 8 v

4.1 X-POL Null and Co-Pol Maximum States

It can be shown for the monostatic reciprocal case that the

X-Pol Nulls and the CO-POL Maxima are identical as
shown in (49a,b).
The power return to the cross/co-pol channels are [122]

Pml (p’xnl) = P’mz (pfqu) = () (443.) @

P o1 (prcml = I A |2 (44Db)

(horizontal )

| 5 Fig. 4.1b - Representation of the polarization ratio in the hori-
Peoo (P'em2 = ‘ A2 ‘ (44c) zontal-vertical (H-V) basis.
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(ZENITH)

135°

(NADIR)

ane
Re (o) i

Fig. 4.1c - Representation of a polarization state on the Poincaré
sphere with correspondence of point on the complex polar plane,
o', with point P (p's) on the polarization sphere.

4.2 CO-POL Nulls, X-POL Maxima, and X-POL
Saddles

The p'yn12 of (52¢) are the cross-pol maxima and p'ys; 2 of
(52d) are the cross-pol saddles. The corresponding power
returns to the receiver of the cross-co-pol channels are:

Py (pam12) = 1/4 (| M| +]A2])7 (452)
Pe(plmt2) = 174 (| M| - | A2] ) (45b)
Pe(p'xs12) = 1/4 (| M| = | M2 | ) (45c¢)
Po(p'ssi2) =1/4 (| M|+ ]| 2| ) (45d)

The P'cn12 of (49¢) are co-pol nulls, because the power
returned to the co-pol channel becomes zero, 1.¢.,

Pc (pFCHl,Z) = () (46)

4.3 The Polarization Fork

In order to determine the “polarization fork operator of
Huynen” [51], use is made of the complex polarization
ratio p formulation [18], shown in Fig. 4.1, relating point
(p’) on the complex plane with P (p’s) on the Poincaré)
sphere [20,122].

. E s
pHv={pHV‘€)aHV= =V | o (dv—2dn)

L
= tanoyy € ¥ =
Er i

tang + jtant
1 —jtan¢ tant

(47)

According to the complex polarization ratio formulation,
each point p’ of the complex plane can be connected to the
zenith (LC) of the sphere, resting tangent to the complex
plane in its origin 0 at the nadir (RC), by a straight line
that intersects the sphere at one point P (p’s) where the
nadir (RC) corresponds to the origin (0) of the plane, the
zenith (Z) to the circle at “infinity (o0)”, and the equator to
the unit circle, representing linear polarization states.
Having established the one-to-one relationship between
the Poincaré sphere and the complex plane, the polariza-
tion fork can easily be constructed as shown in Fig. 4.2.
According to definition (53) and Figs. 4.1a-c, the cross-pol
NULL (co-pol Max) p'xn1 =p'em1 =0 1s located at the
origin of the complex plane, so the mapping point 1s Xi
(South pole: N) on the Poincaré sphere. And
0'xn2 = P emz = 18 the infinity of the complex plane, so the
corresponding point is X2 (North pole: Z). X1 X, forms a
diameter of the sphere and 1s perpendicular to the complex
plane. Refer to Figs. 4.2a-c [123].

According to the expression of the cross-pol max and
cross-pol saddles, they all lie on the unit circle and are the
end points of two-orthogonal diameters. So their corre-

sponding points lie on the equator of the sphere as
S1,S82,T1, and T with $1.52 and T; T> perpendicular to
each other. The co-pol nulls of p'cui2 lie on the same
straight line with p'sx»12 on the plane and symmetric about
the origin 0, so their corresponding points on the sphere
C1 and C> lie on the same great circle with X7 , X2, $1, and
S2, symmetric about the diameter X7 X2. The complete

Fork is shown in Fig. 4.2a and in alternate representations
[19,122] are given 1n Figs. 4.2b-c.

4.4 Huynen’s presentation [51}

In order to compare the results, illustrated in Fig 3.2b, for
our scattering matrix [S]| with that of Huynen’s target
matrix [T] of Fig. 3.2c, Huynen’s geometric parameters
(m, &m > Tm,V,Y,0m ) are introduced in Fig. 3.2c,
where from (41) to (50), we find 4v = ¢; — ¢, tany =
(|v2]/|vi])7, 6m=arg{pl},am=tan_1{|p1”,

dm =12 tan 1 { tan20,, COS2T,; } ,and T,, = 12 sin’ :

| sin2ay, sindy, |. Using Huynen’s geometric parameters,

the properties of the scattering matrix [S], as illustrated 1n
Fig. 4.2a/b, can be expressed according to

[S"(AB)]=[U]' [S]1[U], as [118]
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Poincaré Sphere

\ P

Pxmi m {p)

Re {p'} Complex Plane

Fig. 4.2a - Correspondence of P'xn12=0 em1,2, P xm12, P'cn12 on the complex plane with x12,112,51,2 and C12 on the Poincaré
sphere.

(T,)

(S,)

Fig. 4.2b - Representation of the characteristic polarization states  Fig. 4.2c - The standardized “Polarization Fork of Huynen” with
on the Poincaré sphere (x1: cross-pol null and co-pol max; x3:  definition of Huynen’s geometric parameters presented in the

cross-pol null and co-pol extremum; c12: co-pol nulls; s12. “old basis”.
cross-pol maxima; T1.2: cross-pol saddle points; y: target charac-  m - traget size
teristic angle) presented in the new basis (AB). ¢ - target orientation or tilt angle

Vv - target skip angle

T - target ellipticity angle (ty, , Om of co-pol max)

v- target characteristic angle

P - tano expjd - polarization (ouy , Om of co-pol max).
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[S]1=[U (p1) Jexp(V[L] )m (48a) S. STATISTICAL ANALYSIS IN DIGITAL IMAGE

(1 0 ° . . | PROCESSING

0 tany [P O LETTTU (o) 1 exp (),

‘ ‘ To classity various terrain types of coherent SAR 1mages,
etticient interpretations must be used to reduce the amount
(U (p) ] = (48b) of CPU time required. Here, an approach of classification
| ’ : - R Pt via the scattered wave amplitude and phase statistics
= =1 ¢ ki P ( " Tm) € 133,61] 1s introduced which provides some information
V1+pipi | P1 (P T) €7 e | about terrain surface roughness. The simplest random

uncorrelated rough surface model produces Rayleigh
amplitude statistics while the presence of correlations is
likely to result in deviations from Rayleigh behavior such
_ as Rice, Weibull, etc. Rough surface scattering and the
étag% [ U™ (W,tm,v) | exp (E) ;eia)tii;f;;kl; phe]i)men(?n }?'s ls:an iE POL-SAR (F1g_
. g been known 1n highly coherent laser apph

" ) (49a)  cations as will be shown in the following sections.

which is, as shown in [19] and illustrated in Fig. 4.2c, the
same as Huynen’s [H] given by

[H]=[U (,tm,V) | m

and
[UW,tm,v)] =" et m® ey L], (49b)
where J [J], j [K] and j [L] are the Pauli spin matrices

| 0; | and [I] 1s the 1dentity matrix defined by:

| 10 [0-1 0] -j0
U=l g1 V1=l o |5 1K]= jé.;[L]= 0 j
: ! : ! ] ! ,

[K]*=[1]; [L]= V] [K] =~ [K] [K=J]; [L] =[]

with

o - : . i A
SV_| COSY = simp | (k) _f SINT JSINT | ) | e 0
’ JsinT cost |’ 0 &V

Sy Ccosy

4.5 The complete polarimetric matched image filter

The complete PMIF utilizes the properties of the *Polari-
zation Fork’ concept on a pixel-by-pixel basis [113], and
fully integrates the concept of the localized characteristic
polarization state approach into the optimization solution.
Currently, this approach is being further generalized by
including direct optimization procedures for the Mueller 51 Random Walk of Phasors in Coherent Imaging
(Kennaugh) power matrix. These very extensive general-

izations of the hitherto limited PMIF approach are beyond  The occurrence of speckle is a well-known obstacle in the
the scope of this paper and will be the subject of future  jpterpretation of coherent imaging. Highly coherent laser

publications. light, for instance, produces granular images which do not
seem to represent the macroscopic properties of an illumi-
nated object. A surface 1s rough on the scale of an incident
wavelength and the result of scattering off such a surtace
is a wave which is randomly modulated in phase (Fig. 5.2).
The result 1s a granular intensity pattern known as speckle.

Fig. 5.1 - POL-SAR image of NASA/JPL CV-990 San Francisco
Bay - Golden Gate Bridge Site.

When dealing with large data sets containing speckle, 1t 1s
quite useful to conduct a statistical evaluation with two
goals in mind: identitying and removing speckle and noise
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Fig. 5.3 - Random Walk of Phasors [46].

and determining surface structure based on roughness
criteria.

Suppose, the phasor A is the sum (“random walk in the
complex plane™) of many elementary phasor contribu-
tions, representing the amplitude and phase of a mono-
chromatic wave disturbance (Fig. 5.3).

N
A=ad’ = 1 o €™ (50)
w2

If all the amplitudes and phases of every elementary
phasor are statistically independent of each other, then the
phases are distributed uniformly between (- m, + )
which 1s an indication for a rough surface at this
wavelength. The expressions for intensity and phase are:

(51)

U

E=Vu* +v* : B=tan‘1(v)

where £=0,0=<0=<2mw, , and u, v are general intensity
and phase term components.

The resulting univariate probability density function
(PDF) for the real part is:

1 - 3
2#6Xp(§}

where the mean 1s assumed to be zero and,

P (u) = (52)

N
o' =lim 1I/N Y <|ac|* >,
k=1

N —

also known as the variance.

In the PDF of the imaginary part, the variable u is replaced
by v. Similarly, the joint PDF of the univariate densities
results in the joint, circular Gaussian density function:

2 2
H+V\

2
20 ’

P (u,y)= exp| - (53)

1
2n0°
In polar coordinates (magnitude and phase statistics), u=a
cosO and v=a sinB such that

_a eXp __aZ -T<O=m
2.11302 2(}2 as>0
P(a,0)=. (54)
0 otherwise

The univariate density P(a) is found by integrating P(a,0)
with respect to 0, such that

ri exp (— a_Z | a> 0
T
P(@)=[ P(a0)do- o | 207, (55)
o ] 0 otherwise

which i1s the so-called Rayleigh density function, having
mean and variance of

a=V(r/2)o ; 02=[2—-:TI3/2]02.

Similarly, the univariate density P(0) is given as

( 00 / 2
%‘f ?exp -2 lda-n<0<0
P@)=1"" \ (56)
0 otherwise

Note, that the integral corresponds to the integral of the
Rayleigh density function being unity, hence

[ 1

*E_-—ﬂtzﬁzsm
PO)={"

(57)
0 otherwise

.

Suppose, the Gaussian sampling functions have shifted
means and different variances which is equivalent to
adding constant vectors to the resultant phasors from the
“walk in the complex plane” so that
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N
_ 1 :
A=S+ T E (ax cosO + ax sinby) ,

k=1

then the joint PDF is simply expanded to the general form

1 exp(-—-[u—su]z - [v -]
20,0y 20 207

P (u,v) = (59)

\

In terms of magnitude and phase statistics, the joint PDF

(58)

P (a) =fj;p (a,0) db (61)

¢ exp _a2+52 fn exp(—@{cosﬂ\de
23'[02 2’ - KOZ )

The integral may be expressed as 2l (as/ o”), where Iy is
a modified Bessel function of the first kind and zero order
which results in a Ricean density function [46,121]:

2, 2
becomes (iexp(-a L ]Io-':—1£ a>0
o o’ 20° | o
P (a,0) = (@) = (62)
0 otherwise
a ~ [acos6 - s,]° - [asin®-s,]°) @ >0
e B -n< 6 o .
20,0y 20% 20, ] o< The following figures show several magnitude PDFs of a
ﬁ 0 : Ricean distribution where the shape of the PDF changes
otherwise  irom a Rayleigh density to a Gaussian shifted by s as s
increases (Fig. 5.4 & 5.5).
(60)  The corresponding phase PDFs are shown next, where the
The univariate density function in polar form is distribution changes from ‘a straight ‘line for a Rayleigh
density to a bell-shaped curve as the phasor constant
Increases.
ap 4(a)
0.75
0.50 k=1
k=4 k=5

k=2 k=3

N0

LSO

o

| Ny
5 6

Q |

S
7 8

Fig. 5.4 - PDF of amplitude A of the sum of a constant phasor (length s) and a random phasor sum; k = s/ o [46].
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Pﬁ(e)

Fig. 5.5 - PDF for the phase for a constant phasor and a random phasor sum; k = s/0 [46].

5.2 Statistical Analysis and Interpretation of the CV
990 SAR Image Parameters

In this section, 1t will be shown that an investigation of the
basic complex POL-SAR data reveals a great deal about
the type of scatterer in terms of its roughness. At micro-
wave frequencies, the earth’s surface i1s assumed to be a
surface with different roughness regions, no matter
whether the scattered region is ocean, vegetation or rock.
This assumption reduces the statistical process simply to
a determination of how much the distribution deviates
from Rayleigh behavior. Three structurally uniform re-
gions were chosen from a horizontal band located half-
way between the top and the bottom of the image as shown
in figure 3.6.

5.2.1 PDFs of Magnitude and Phase POL-SAR Com-
ponents

The magnitude PDF of ocean returns are expected to

resemble Rayleigh statistics [39,81,88,91,94,96,
102,103,111] more closely than the returns of the city
region, since the ocean surface has fewer structured com-

ponents 1n the image except for bridges, ships, break-
waters, and other man-made structures. Furthermore,
since the ocean surface is relatively smooth, it acts like a
flat plate reflecting EM radiation away from the obliquely
oriented receiver. The city region, however, consists of
many corner reflectors which reflect back much of the
energy, which shows up as recognizable terrain features
in the image.

The magnitude PDFs of the three selected regions: ocean,
city and park, as shown in Figure 5.6 look Rayleigh
distributed, while the associated phase PDFs are all uni-
formly distributed. The means and variances of the mag-
nitudes of the individual image regions tend to agree with
the fact that less speckled radar returns shift the PDF
towards a Gaussian curve [41] as seen for the ocean, while
more speckled image regions have skewness and kurtosis
deviations from the Gaussian as well as shifted means.
These simple PDFs show a trend of the image data being
generally Rayleigh distributed. It 1s, however, not possible
from these PDFs to differentiate clearly between different
terrain types, hence our statistical evaluation needs to be
taken a step further [9,60,94,96,111,118-120].

Another approach 1s to make use of the circular Gaussian
theorem [27,45] which states that if the means and stand-
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Fig. 5.6 - Image depicting the selected image region for ocean (1), city (2), and park (3).

ard deviations of the real and imaginary data components
are 1dentical, the distribution will be truly Rayleigh, 1.e.
the events are totally random and unstructured. Con-
versely, if the means and variances differ, then the image
has structure which 1s different for various surface rough-
nesses [85].

5.2.2 PDFs of Real and Imaginary Components

The PDFs of the real and imaginary parts of the selected
image regions are shown in Figs. 5.4, 5.5. All distributions
are Gaussian and while the respective means and vari-
ances of the ocean and park regions are sufficiently simi-
lar, the city region exhibits a shifted mean of the imaginary
distribution to the right. As discussed in the previous
section, the shift of the mean of the imaginary distribution
implies that a constant vector is added to every phasor
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Fig. 5.7 - Pictorial description of the scattering process of some basic terrain.

resulting from a walk in the complex plane which 1s an
indication that the density function is not Rayleigh but
Ricean distributed. A guess at what might contribute a
constant phasor is that the angular geometry of the city
contains many strongly reflecting corner reflectors.

5.2.3 PDFs of Phase Differences of the POL-SAR Com-

ponents

[t can be assumed that the POL-SAR data set contains a
great deal of noise and speckle which should be eliminated
to get a clearer image of the underlying structure within
the selected image regions. It would be 1deal if the noise
components cancel out of the following ratio:

Sun
Svv

Sun (noisy)
Svv (noisy)

(noice-reduced) (63)
The choice of the co-polarized components seems best if
the channels for H and V have good separation. It turns
out that the ratio of the magnitudes (Magun/Magyy 1ooks

Rayleigh distributed and does not differ much from the
magnitude PDFs of either one of the components. The

phase differences (8xx — Ovv), however, contain a surpris-
ing amount of image information as shown in Fig. 5.10.

Note, that the phase difference PDFs of the three regions
consist of the phase differences between the same pixels
of the appropriate data sets (e.g. HH(10,18) < -- >
VV(10,18), etc.), before generating the distribution.

The basically very unique PDFs between the three image
regions may be called target/terrain signatures based on
their surface roughness. Furthermore, the shifted peak of
the city region might be attributed to a m-phase shift due
to the presence numerous corner reflectors.

5.3 Application to CV 990 and Discussion of Results

The results indicate that a statistical evaluation of the
polarimetric SAR data set 1s very useful, especially in
getting a “feeling” for the amount of structure versus
unstructured noise and speckle components. It seems that
speckle statistics can be used by itself to classify terrain
in terms of surface roughness. A relatively smooth surface
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Real and Imaginary Components of Ocean Segment
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like ocean has a very narrow variance while the corner
reflectors of the city and, to some extent, vegetated areas,
spread the distribution. It is necessary, however, to com-
pare at least two distributions of, say, ocean versus city to
clearly see the difference. Whether the “structured speckle
distribution” of the city region really contains a constant
phasor 1s not confirmed and could be coincidental or
perhaps a calibration problem.

These preliminary results, particularly the shifted means
of the city segment in terms of real and imaginary com-
ponents, are promising but one should be cautious. This is
the first time a POL-SAR data was investigated statisti-
cally and documented in this fashion. Furthermore, the
radar equipment does not exist anymore, making it im-
possible to obtain more and better data sets. It also seems
that the equipment was not very well calibrated at times
hence the phase information cannot be trusted. Neverthe-
less, the statistics 1s promising and should be tested on new

POL-SAR data sets.

5.3.1 Speckle Displacement Along the Path of Flight Due
to Motional Ground Scatter

Two other phenomena on the image (see Figure 5.1)
consist of the dotted lines parallel to the Golden Gate
Bridge as well as the shaded regions near the ocean/city
boundary along the coast line on the left side of the image.
Sometimes, speckle is displaced orthogonally to the swath
by more than a speckle diameter, apparently due to move-
ment within the resolution cell of the speckle. Another
possibility might be the presence of two strong and similar
scatterers 1nside one pixel resolution cell or neighboring
pixels. In either sace, strong scatterers may actually have
strong diffraction patterns which interfere constructively
at certain displacements from these bright pixels in the
image (refer to Young’s fringe patterns in optics [28].

5.3.2 Displacement Due to Diffraction or Multiple Scat-
tering

Suppose, the angular distribution of the fringes is

d; sinf = n (64)

where n 1s the nth order interference maximum in the
direction dj, then the vector displacement dy of the object
would be given as

(65)

where M corresponds to a magnification factor, possibly

related to the dielectric properties of the scatterer with
respect to its surroundings (e.g., metallic surface or tall
beam vs. rocky and vegetated terrain or water). The
speckle translation due to the diffraction interference phe-
nomenon described above, although speculative, may ex-
plain the bright pixels connected to lines as seen on either
side of the Golden Gate Bridge. This bridge is supported
by two tall twin towers which are located near the bright
horizontal lines connecting the brightest displaced pixels
near the ends of the bridge. Two very thick parallel sus-
pension cables span between the towers in an arc from
which more vertical cables reach down to the sides of the
roadway.

5.3.3 Displacement Due to Motional Ground Scatter Dop-
pler Shifts

The other likely possibility of motion within a resolution
cell, by a moving car, for instance, seems feasible that this
motion has an effect (Doppler shift) on neighboring image
cells.

The “ghost image™ of the city along the left coast line may
also be described by displacement due to diffraction or to
motional Doppler shifts. The numerous adjacent strong
scatterers (corner reflectors) of the city are displaced into
the ocean region where they are contrasted well against
the dark ocean which does not scatter back much energy
towards the antenna. The park region of the image does
not produce a “ghost image” as strongly as that of the city
which might be interpreted as the presence of fewer corner
reflectors or flat surfaces, 1.e. man-made structures, 1n-
cluding moving vehicles. It is assumed that a similar
“ghost image” 1s projected in the opposite direction, i.e. to
the right but not visible because of the brighter city image.
Another possibility of obtaining a coherent superposition
of diffraction effects is to rotate or vibrate either the terrain
surface or, of course, the radar platform mounted to the
aircraft. The latter 1s quite likely, considering that the
image was taken over a 10 km stretch during eight minutes
of flight. Hence, many of the displaced pixels may be
attributed to minute fluctuations of the flight path.

Yet another method of speckle (pixel) displacement in-
volves Fourier transformation during post-processing pro-
cedures of the image which was done before this 1image
data set was made available to this author. If the nearest
sidelobes of every pixel in the frequency domain are very
high, due to the effects of constructive diffraction interfer-
ence, the result in the time domain may be the pixel itself
as well as two adjacent but less intense pixels translated
to either side which is a phenomenon observed in micro-
wave astronomy |28].



248 EARSel. ADVANCES IN REMOTE SENSING, Vol. 2, No. 1 -1, 1993

CONCLUSION

In this monograph, a concise overview was presented on
how complete polarization information in POL-SAR
image analysis may be utilized to further improve our
various existing standard methods of speckle reduction.
Specific emphasis was placed on developing the concept
of the “Limited Polarizatton Matched Image Filter” at
first, and extending it to include the complete set of
characteristic polarization states into its formulation
which requires extensive further advancement so that this
method can be applied successfully to the optimization of
image discriminants in POL-SAR image analysis [117].
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