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ABSTRACT

The combination of remote sensing techniques and GIS is a very useful tool for hazard modelling.
Nevertheless, it is widely known that geographical information is subject to error and uncertainty. Therefore,
the success and the usefulness of such hazard models depend upon the correctness of the input data. These
errors are due to the quality of the original analogue data, the digitising of the data, the field measurements,
and the digital treatment of the data (interpolation, modelling).

This paper discusses the results of a study with the aim to investigate the effect of random errors in input data
on hazard models. This is done by means of a theoretical approach, based on the Monte Carlo simulation. The
methodology consists of the generation of known errors in a "supposed” error-free data set. The size and the
statistical distribution of the errors are controlled individually for each thematic map and are changed during
different simulations.

A first set of results is obtained for the error sensitivity of different parameters. It is concluded that this
sensitivity was remarkable different according to the parameter and in relation to the degree of error.

A second set of results is obtained about the holistic influence of error in the computed hazard model for wild
fires . The difference between each of the resulting hazard maps and the error-free hazard map is made. The
spatial distribution of the anomalies allows one to note the areas where the hazard model is doubtful, based only
on error in input data.

INTRODUCTION

The power of geographic information systems (GIS's)
for capturing, integrating, manipulating and
modelling map data and the explosive growth of the
applications during the last decades give rise to the
question about the reliability of the results. It is
widely known that GIS is subject to error. However,
errors and uncertainties in map data and in GIS are
often undervalued or even ignored as it concerns
environmental modelling.

“What could be cuter
Than to feed a computer
With wrong information

But naive expectation
To obtain with precision

A Napoleonic decision?”
(Eco, 1991)

Yet, the analysis of spatial data with unknown
accuracy will result in output products with low
confidence limits and with restricted use in the

decision making process (Lunetta et al., 1991). Also,
there are no standard procedures in commercial GIS
for error handling (Brunsdon & Openshaw, 1993).

Errors and uncertainties in GIS's can have many
different causes. Three main groups of factors
governing errors that are commonly associated with
geographic information processing have been
identified by Burrough (1986):

1. Obvious sources of errors, including age of data,
areal coverage, map scale and density of
observations.

2. Errors associated with the natural variability or
from original measurements, including positional
accuracy (e.g. errors due to digitising), qualitative
and quantitative accuracy, and sources of
variations in data (e.g. measurement errors,
observer bias).

3. Errors arising through processing, including
numerical errors in the computer because of the
limitations of computer representation of
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numbers, faults associated with topological
analysis, and classification and generalisation
problems. This group also includes errors in
interpolation.

Another factor having an important contribution to
the success of the hazard models is the resolution of
the raster data set. This problem of scale is not new as
it concerns the use of cartographic documents. The
scale or resolution of a map influences the type of
data which can be extracted from the map (analogue
or digital). According to the spatial resolution of the
digital elevation model strong errors may occur in
derived information, such as aspect and slope. This
topic of error effect is, however, not discussed in this

paper.

The study of error propagation can be split into five

tasks (Openshaw ez al., 1991):

1. Modelling the distribution of errors to show the
uncertainty characteristics of digital map
databases.

2. Developing procedures to investigate what will be
the effect of errors (in input data) on GIS
procedures. One solution is a Monte Carlo-
simulation.

3. Models and techniques must be applied to some
case studies to derive empirical estimations of
error in output.

4. Development of techniques to utilise output data
uncertainty estimates.

5. Incorporation of the technology as standard GIS
procedures.

AIM OF THE STUDY

The purpose of the study was to answer the following
questions:

1. What will be the effect of errors occurring in a
DEM on the calculation of other variables (for
example slope degree)?

2. What will be the variance of the error in for
example slope orientation, if the DEM has a root
mean square error (RMSE) of 1 m?

3. Will there be a difference in the amount of error in
for example slope orientation, if the RMSE of the
DEM is increased from 2 m to 3 m, as from 1 m to 2
m?

4. What will be the distribution of errors of the
derived data, if initially a random distribution is
considered?

5. Can it be concluded that the reliability of the
derived data is spatially determined?

These questions need to be answered and are of
primary interest when additional information is
derived from the input data throughout the GIS
process.

In general, the accuracy of a calculated variable is
checked by means of random sampling, comparing
the values of the calculated variable with the values
obtained through a more accurate method of
measuring. This procedure, however, cannot be
applied if one does not have access to a more accurate
set of data.

To try to answer the above questions and to have an
idea about the variance of error in the variable with
increasing degree of error in the initial data, an error
propagation was made, based upon the principle of a
Monte Carlo simulation (Eastman er al., 1993;
Fisher, 1991a).

The presented study also aimed to determine the
holistic influence of error in a computed hazard
model for fire spreading. The resulting hazard maps
and the spatial distribution of errors in the fire
spreading hazard allowed the reliability of the model
to be determined.

METHODOLOGY

The Monte Carlo simulation

A Monte Carlo simulation is based upon a
randomiser algorithm for generating errors in the
original data set. It is supposed to have an error-free
(theoretical) data layer (e.g. DEM) where the values
of the grid cells represent the true values (in the
following, indicated by MAP_0).

In the frame of this research, data layers (MAP_X)
are produced showing anomalies with the MAP_O. It
is supposed that these anomalies are randomly
distributed. This means that spatial autocorrelation is
not taken into account. Moreover, errors are
distributed normally around a mean p=0 with a
standard deviation s corresponding to the degree of
€rTor.

The procedure for error simulation is given in figure
1.

The uncertainties are included in the original input
data set by combining the MAP_0 with the error
maps (ERR_X) to create the other MAP_X. MAP_0O
and MAP_X (e.g. DEM_0 and DEM_X) are then
used as basic documents to derive other information:
e.g. slope (SLOPE_0 and SLOPE_X).
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If no systematic error occurs, the difference between
MAP_X and MAP_0 is normally distributed. In the
case of this study, this distribution is user defined,
with p=0 and s. The size of s is a measure for the
“quality” of the input map. The larger s is, the less
precise are the data of the input map. Figure I
represents the histogram of the difference map
DEM_X-DEM 0O with a normal distribution around
p=0 and with s =5 m.

In the next step, an algorithm is applied to the input
data (DEM_0 and DEM_X). The difference between

the results (SLOPE_X-SLOPE_0) is also calculated
and the distribution is an indicator of the errors that
might be expected when the initial information layer
is characterised by an inaccuracy of s (e.g. 5 m). The
distribution of the difference between the derived
variables does not have to be normal.

Errors are brought in the digital elevation model and
the distance maps.
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Figure 1 - Procedure followed for error simulation

Errors in the DEM

Seven different error maps (ERR_X) are created with
p=0 and a standard deviation (s) of 1, 2, 3, 4, 5, 10
and 20 m. The distribution of these errors for the
different s-values is given in figure 2. These ERR_X
are used to produce the “error”DEM’s (e.g. DEM_1
to DEM_20).

Errors in the distance maps

Distances to roads, coast and waste dumps are
calculated using the standard procedure in the
ILWIS-software (Integrated Land and Watershed
Information System, Enschede, The Netherlands)
(ILWIS, 1993). Initially, each non-target pixels gets a
maximum distance to the source pixels. For each
pixel, the distance to its neighbouring pixels is
calculated using a 3*3 filter with values 7,5,7 - 5,0,5 -
7,5,7 (7/5 is a good approximation of A2, that is the

distance between two diagonally connected pixels
when the raster cell size is equal to 1). Using this 7/5
approximation, a maximum error of 5 % is obtained
for straight lines of 0, 45 and 90° (5 % too small) and
for lines of 22.5 and 67.5° (5§ % too large). Distances
for all other lines are calculated correctly (ILWIS,
1993).

To investigate the influence of errors in distance
maps, a population of random errors is created that
are distributed normally around a mean p with a
standard deviation s, corresponding to the degree of
error. Five different error maps (ERR_X) are created
with p=0 and a standard deviation (s) of 1, 2, 3, 4,
and 5%. The ERR_X are combined with the different
distance maps to create ROAD X, COAST_X and
DUMP_X.
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Figure 2 - Histogram of errors generated in the input data

ERROR SENSITIVITY OF THE DERIVED
DATA

Slope gradient

The effect of error in slope gradient is illustrated in
figure 3. It shows that the average calculated slope
gradient will increase with increasing degree of
random distributed error. In other words: slopes

become steeper with increasing random error in a
DEM.

Moreover, error in slope gradient will become larger
with increasing error in the DEM. This relationship
is quasi-linear. This means that if the accuracy of the
height determination is higher (thus with lower s),
the accuracy of the derived data (slope gradient) is
also higher (s-value is lower).

Error in Slope (in %)

Error in DEM (in m)

10 15 20

Figure 3 - Influence of errors generated in the DEM on the calculation of slope gradient
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Figure 4 - Influence of errors generated in the DEM on the calculation of aspect

The effect of error in aspect is illustrated in figure 4.
It shows that the errors of aspect (expressed as s-value
in degree on Y-axis) increase with increasing error in
the DEM (expressed as s-value in m on X-axis). A
relative small error in the DEM (s=1) result in
important errors for the aspect. The increase of error
becomes less with increasing s-value of errors in the
DEM.

The relationship between the errors in the aspect map
and the errors in the DEM follow a logarithmic curve.
Because the difference in aspect between the
theoretical ~“‘error-free” aspect and the aspect
calculated using the ‘“error” DEM cannot exceed
180°, the error in aspect (thus the s-value on the Y-
axis) is limited to a maximum.

EFFECT OF ERRORS IN THE FIRE HAZARD
MODEL

The model

In previous studies (De Vliegher & Basigos, 1994),
research with respect to fire hazard modelling has
been made, using remote sensing techniques and
geographical information systems. These studies were
undertaken in the district (Eparchy) of Pylias (SW-
Peloponnese, Greece). Statistical data for the period
January 1978 to August 1993 include records of 118
wild fires in the district of Pylias covering an area of
4454 ha of forested land and 7015 ha in total,
including agricultural land.

The fire hazard was investigated based upon the
relationship between the fire history and the physical
and human characteristics of the study region. The

influencing factors were chosen with respect to the
results of multi-temporal field work. These are: 1)
altitude, 2) slope degree, 3) aspect (slope orientation),
4) vegetation, 5) accessibility of the area, 6) distance
to waste dumps and 7) influence of tourism.

Two important steps can be distinguished in the
hazard modelling: 1) determination of the thematic
hazard and 2) calculation of the hazard for fire
spreading.

Determination of the thematic hazard

The procedure to determine the relationship between
the environmental problem (i.e., the occurrence of
wild fires) and the different parameters (influencing
factors) comprises four steps, as shown in figure 5.

1. Dividing the influencing factor into thematic
classes (e.g., slope 0-2 %). The frequency (%) of
each thematic class is defined. The fire location
map (period 1978-1992) is combined with the
thematic map and the area affected by wild fires
within each thematic class is determined and
expressed in %.

2. The obtained results are represented by column-
line histograms, where the X-axis refers to the
thematic class and the Y-axis represents the
proportional frequency of the thematic class (lines
refer to fire frequency, columns refer to the
frequency of the thematic class).

3. Calculation of ratio “Fire frequency per thematic
class (%)/Frequency thematic class (%)”

4. Definition of hazard function for each of the
influencing factors.

Using this function, thematic maps are converted into

thematic hazard maps.
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Figure 5 - Procedure of thematic hazard determination

Calculation of hazard for fire spreading

The hazard for fire spreading is obtained by multiplying the different thematic hazard map values :

Hazard:=V*A*S*O*R*D*C

with V= vegetation hazard A= altitude hazard
= slope hazard 0= aspect (orientation) hazard
R= accessibility hazard C= distance to coast hazard
D= waste dump hazard

Four hazard classes are distinguished:

Hazard class Hazard value
No to slight 1
Moderate 2
Severe 3-10
Very severe > 10

HOLISTIC INFLUENCE OF ERRORS IN THE error are used for the fire hazard modelling,
HAZARD MODEL according to the procedure described above. Seven

different hazard maps are produced, named HAZ 1 to
In order to compute the holistic influence of errors, HAZ_20. These maps are made as a combination of
the obtained thematic maps with various degrees of  the respective thematic “error”-maps (Table 1).
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Table 1 - Degree of error in the input data to create the "error' hazard maps

Degree Thematic hazard map for
of error in | Hazard DEM Slope Aspect | NDVI Dump Road Coast
input data (A) (S (0) N) (D) (R) ©)
s=1 Haz_1 A_l S 1 0_1 N D_1 R_1 C_1
s=2 Haz_2 A2 S 2 0.2 N D_2 R_2 C2
=3 Haz_3 A_3 S3 0.3 N D3 R 3 Cc.3
=4 Haz 4 A4 S_4 0.4 N D 4 R_4 C_4
=35 Haz_5 AS S_5 0.5 N D 5 RS C_5
s=10(5) |Haz_10 A_10 S_10 0_10 N D5 RS C_5
s=20(5) |Haz 20 A_20 S_20 0_20 N D_5 R_S C_S

S

TIPS :
N S
t\“ : ‘M. i
2

P

RRRY
AR
SR

LT
%

&

57
<«
XX
G5

S

%

e,
9%

.,

Km 4

1. no to slight
2. moderate
3. severe

4. very severe

Figure 6 - Extract of hazard maps created with different degree of error
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Figure 6 includes extracts of hazard maps created
with different degrees of error in the input data. This
figure shows clearly that the fire hazard map becomes
more uniform with increasing degree of error in the
input data. Classes with high hazard disappear in
favour of the lower classes. Compared to the hazard
map HAZ_0, nearly no zones of very severe hazard
remain on the HAZ 20. Also, the very fragmented
area of “No to slight” hazard in the centre of HAZ 0

has grown to a large and uniform area on the
HAZ_20.

The increase in areas belonging to the “no to slight”
hazard class is shown in figure 7. It is coupled to a
decline of the high hazard classes “severe” and “very
severe”. It can thus be concluded that the degree of
hazard will be less pronounced with increasing
random error in the initial data set.

=——O— Haz.1
% ; —— Haz.3
151 —x— Haz4
0 4SKm X | — X 4 X
0 5 10 15 20

Degree of error

Figure 7 - Proportion of hazard classes (%) as a function of error

Mean hazard value

Error (s.d.)

Figure 8 - Mean value of fire hazard in function of error in input ddta
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This trend of decreasing hazard with increasing error
in input data can also be deduced from the mean
hazard value of the different hazard maps. Figure 8
gives the mean hazard value for the entire hazard
map of the Eparchy of Pylias, as well as the mean
value of the areas burnt during the period 1978-1992
and during the period 1992-1993.

The decrease in mean hazard value is most
pronounced in the case of relatively smaller errors:
The difference between the mean value for HAZ_O-
HAZ_5 and for HAZ 5-HAZ 20 is 0.36 and 0.26,
respectively. The same trend occurs when only the
burnt areas are considered.

COMPARISON OF HAZARD_ERROR MAPS
WITH THE "ERROR-FREE" HAZARD MAP

The ambiguity of the hazard model due to errors in
the input data is investigated by comparing each of
the resulting hazard maps (HAZ_X) with the “error-
free” hazard map (HAZ_0). The -cartographic
representation of the spatial distribution of “hazard”-
errors allows one to note the areas where the hazard
model is doubtful, based only on errors in the input
data.

A comparison with the different thematic maps is

performed. An illustration is given for altitude

(Figure 9a), slope (Figure 9b) and distance to waste

dumps (Figure 9c¢). It can be said that:

1. the hazard model for fire spreading in the Eparchy
of Pylias becomes less reliable with increasing
degree of error for areas located at higher altitudes
(> 600 m). For each of these thematic classes,
more than half of the area has a different hazard
value than the one obtained when ‘“error-free”
maps are used as input data.

2. Two groups of slope classes can be distinguished.
The limit between these groups is 12°. Only slopes
steeper than 12° will cause problems when errors
greater than Erl0 are present in the input data.
For those steeper than 18%, significant problems
occur beyond Er5.

3. A clear distinction can be made between areas
close to a waste dump (< 1000 m) and areas at
greater distances: the higher the degree of error in
the input data set, the less reliable will be the fire
spread hazard for areas within a distance of 1000
m from a waste dump. This is particularly
significant for distances beyond 500 m at errors
greater than Er4.

CONCLUSION

The advantage of GIS applications is that information
can be extracted automatically from input data saving

time and sparing costs. The input data can be
combined with the derived variables to set up hazard
models which can be used in decision making and
planning. It would be nearly impossible to arrive at
this point if this information were to be calculated in
a non-automatic way.

However, GIS is very prone to errors and
uncertainties. This point should be of primary interest
if (hazard) models are used. Even relatively small
errors in the input data can result in important errors
for the derived data and can disturb the outcome of
the model influencing as such the decision of the end
user. It is essential to know what is the sensitivity of
the different parameters used in the model to error
and uncertainty in the input data.

As illustrated in this paper, error sensitivity can be
studied by means of a theoretical approach that is
based on the Monte Carlo simulation. The results of
this research illustrate the error sensitivity of different
parameters. The sensitivity to error is strongly
different according to the parameter and in relation to
the degree of error. It is found that a relative small
error in the input DEM may result in important
inaccuracies as is the case with aspect. The errors of
aspect increase with increasing error in the DEM.

The holistic influence of error in a computed fire
hazard model is also discussed. It is found that the
fire hazard map becomes more uniform with
increasing degree of error in the input data. Classes
with high hazard occur less frequent in favour of the
lower classes. This means that the degree of hazard
will be less pronounced with increasing random error
in the initial data set.

In conclusion, it can be formulated that it is important
to know, prior to modelling, what variables are highly
sensitive to errors. This will allow to bypass these
parameters with a "chaotic" behaviour and to obtain
better results for the model or to define these areas
where the hazard model is doubtful, based only on
errors in the input data.
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