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ABSTRACT

A contextual algorithm for fire detection using NOAA-AVHRR data was developed at the Natural Resources

Institute (NRI).

Unlike ‘traditional’ fire detection algorithms applied to NOAA data (e.g. multi-channel

thresholds), the decision to record a fire is made by comparing a potential fire pixel with the pixels in its
immediate neighbourhood. The procedure automatically extracts values in channels 3 and 4 of neighbourhood

pixels, which are then compared to those of the potential fire pixel.

The algorithm is self-adaptive and

therefore is a very consistent method over large areas as well as through seasons, without the need to change
the thresholds. The algorithm was successfully applied in several areas of the world. This paper describes the
approach chosen, compares it with ‘traditional’ techniques, and analyses advantages and drawbacks in light of

some examples.

INTRODUCTION

Within the framework of ongoing activities of
Vegetation Fire Monitoring by NRI and the Global
Vegetation Fire Products (GVFP) project (Stuttard et
al., 1995), the authors have developed and applied a
fire detection contextual algorithm capable of
automatically detecting fires, using NOAA-AVHRR-
LAC data. An important development in the
production of such GVFP is the establishment of
algorithms that are capable of detecting fire events
(from NOAA data) reliably, routinely and
automatically for any part of the world. It is
important that such algorithms be sensitive to
seasonal effects, daylight conditions and ecosystem
related phenomena. Indeed, each region will have its
own characteristic burn regime, seasonal pattern of
surface and climate conditions, that will affect
background temperature and thus the response of
NOAA-AVHRR channel 3.

After a review of existing fire detection techniques,
this paper describes the contextual algorithm
developed and gives the first results obtained within
different ecosystems distributed around the world.

1. Fire detection with AVHRR data
Fire detection from NOAA data is achieved by a

number of methods, all of which utilise the
dominating effect of hot fires in the thermal infrared

channel 3 (3.75 Wm) signals at some stage. The
methods can roughly be classified into four categories
which are defined by the algorithm used: channel 3
Single Threshold algorithm, channel 3 Multiple

Threshold algorithm, Multi-Channel Threshold
algorithms and Contextual algorithms.
1.1 The simplest algorithm is to retain all pixels

that are saturated (or near saturated) in channel 3.
This approach relies only on channel 3 data and
assumes that a single threshold value can be used to
identify fire pixels (e.g. Malingreau and Tucker
1988, Setzer and Pereira 1991, Pereira 1993,
Langaas 1994). In most cases, the saturation of the
pixel in channel 3 would indicate unusually hot
features and could be assumed to represent a fire.
However, the single threshold method is susceptible
to confusion with hot bare surfaces, warm dry
savannahs and bright clouds, and may not be suitable
for regional scale fire studies over time (Grégoire et
al. 1993).

1.2 The channel 3 Multiple Threshold algorithm
is rarely used, but appears to lie behind some of the
developments in the implementation of contextual
algorithms described below. Smith and Vaughan
(1991) adopted an approach based on three tests of
channel 3. The first test selects potential fire pixels
using a single threshold in channel 3. Later, the
potential fire pixel is tested with two algorithms that
use contextual information. The standard deviation
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in channel 3 is calculated for surrounding pixels of a
5x5 window (centred on a candidate pixel). The
surrounding pixels must not be identified as potential
fire pixels. By assuming that fire pixels influence
surrounding pixels, small standard deviations are
assumed to be signal noise and are used to exclude
some of the potential heat source pixels. The third
test subtracts the candidate fire pixel value in channel
3 from the mean value of the 5x5 window. If the
difference exceeds a certain value, the potential fire
pixel is retained.

1.3 Multi-Channel Threshold algorithms have
gained a great deal of support in recent years, as they
have been shown to be regionally robust and simple to
implement. A wide range of multi-channel threshold
criteria exist, developed by, for example, Kaufman et
al. (1989, 1990a,b), Langaas (1992, 1993), Belward et
al. (1994), and Kennedy et al. (1994). All of these
algorithms utilise combinations of two or more fixed
thresholds for channels 3 and 4 (3.75 Um and 10.8 L
m, respectively) either singly or in combination.
Some Multi-Channel Threshold algorithms also add a
reflectance test in channel 2 (Kennedy et al., 1994).
As in the case of simple channel 3 thresholding, all
the published multi-channel thresholds have been
developed for specific regions and specific times.
This approach is unfortunately insensitive to
variations in normal land surface temperature
conditions over time for a given area and over
different ecosystems (LLangaas 1994).

1.4 Spatial or Contextual algorithms are based
on the spatial variability of thermal signals in a pixel
neighbourhood.  The brightness temperatures of
potential fire pixels are checked against the brightness
temperatures of cloud-free (assumed non-burning)
neighbouring pixels. This takes into account the
spatial thermal variability of the background, which is
not easily dealt with in either single channel
thresholding  or  pixel-by-pixel =~ multi-channel
thresholding (Langaas 1994). The principles of the
contextual approach were first found in a fire
detection algorithm review by Justice and Dowty
(1993). Similar approaches have been shown to be
successful for specific cases by Lee and Tag (1990)
Smith and Vaughan (1991), and Flannigan and
Vonder Haar (1986).

From all existing algorithms, the contextual technique
was very attractive for an automatic and regionally
sensitive Global Vegetation Fire Product, without the
need to rely on highly variable, locally derived
thresholds. Starting from the information collected in
the literature, especially the NASA/GSFC approach

described by Justice and Dowty (1993), the idea was
adapted and developed further (Flasse and Ceccato,

1995). The following section presents the new
algorithm.
2. Contextual algorithm

The contextual algorithm developed consists of two
stages: the first selects candidate pixels that could
potentially be fires (PFs) and the second confirms or
rejects these PFs by comparing them with their
immediate neighbours.

2.1 Potential Fire detection

This first stage is intended to roughly select all those
pixels that may be a fire. It uses thresholds similar to
traditional fire detection algorithms, applying
thresholds low enough to retain at least all those
pixels that could be fires, and high enough to reject
most pixels that are definitively not fires. The
following tests are employed:

Test 1: A pixel is selected as a Potential Fire (PF) if:

™3) > 311K (1)
" 183) - 181y > 8K @
where TB(x) = Brightness Temperature in channel
" x=3,4

K = Kelvin

The choice of the thresholds used in these two tests
was driven by practical experience. The first
threshold was selected low enough to reduce the
likelihood that potential fires would be rejected in
colder regions, such as a forested environment. The
second threshold was placed high enough to reject
those pixels that are not fires in any case (e.g. pixels
with high brightness temperature in both channel 3
and 4) (e.g. Kennedy er al. 1994, Kaufman et al.
1990). Even though the contextual algorithm doesn’t
require specific areas to be masked, its efficiency and
performance will increase when clouds, desert and
water are not included. Desert and water masks can
be found in several data bases and main water
surfaces can be detected using low NDVI values. In
addition, the authors also used simple combinations
of channels 1, 2 and 5 to enable major clouds to be
masked (Stuttard er al 1995).

Test 2: A PF pixel is NOT retained as a fire if:

P2 >20%
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where p2 is the top-of-atmosphere bi-directional
reflectance factor for AVHRR channel 2 (0.9 um).

Since the band width of AVHRR channel 3 (3.55 -
3.93 um) covers parts of both the solar and thermal
ranges of the -electro-magnetic spectrum, it is
important to reject those pixels whose value in
channel 3 would be saturated due to high reflection
rather than high temperature (e.g. from bright soils,
clouds or sun glint). Even when masks are applied,
this test still eliminates remaining falsely detected
fires (e.g., in areas of bright savannah or sun glint on
rivers).

2.2 Potential Fire confirmation

The second stage confirms or rejects the potential fire
(PF) selected in the first stage as being definitely a
fire. For each PF, this decision is made in light of
some knowledge of the potential fire and its
neighbours. Indeed, if most of the latter appear to be
sufficiently different from the PF, it is selected as fire.

The confirmation process begins by extracting
information on a  statistically  significant
neighbourhood population. For each PF, statistical
information is automatically calculated for a varying
sized context-window (from 3x3 to 15x15 pixels)
around the PF, which is operated upon at least 3
pixels are eligible to be used in the comparison. If
these conditions are not met, the PF is rejected and
the pixel is marked as NON-fire. If the PF passes this
test, the following information is computed:

TB(S)b = mean of channel 3 brightness
temperatures of the background

oTE3)p ~ standad devistion. of thenysl 3
brightness temperatures of the background

TB(3—4)b = mean of the difference (channel 3 -
channel 4, brightness temperatures) of the background

oT B(3—4)b = standard deviation of the difference
(channel 3 - channel 4, brightness temperatures) for
the background

Only those pixels that are relevant to a normal fire
background are eligible for statistical calculations;
that is, they must NOT be a PF, NOR water, NOR
cloud. Indeed, the inclusion of the latter would bias
the statistical information and therefore lead to
erroneous conclusions. For example, a hot sail,
selected as a PF and surrounded by water, could be
confirmed as fire, since low values in channel 3 for

water decrease the PF’s background mean.
Conversely, a small fire surrounded by other fires
would not be confirmed as a fire, since the values of
the other fires would erroneously increase the PF’s
background mean.

Test 3: A PF is classified and retained as a fire when
it appears to be different enough from its background.

PF is confirmed as a fire when

TB3-4)pp - [TP(3-4)p + 26TPG-4)] > 0K (3)
and

TPG)pE - [TP(3)p + 20T (3)p] > 3K @)

where: PF refers fire

temperatures.

subscript to potential

The first equation refers to the NASA/GSFC
approach and takes into account the difference
between channels 3 and 4. Such a test is necessary in
OEgler to eliﬁﬁnate PFs whose difference between
T7(3) and T (4) is lower than the mean difference of
the fire background. This test mostly eliminates
pixels that produce a high value of radiance in both
channel 3 and channel 4, such as hot bare soils.

The second equation verifies the brightness
temperature in channel 3 against the mean brightness
temperature of neighbouring pixels. Indeed, a fire is
identifiable in its context if there is a significant
difference between the brightness temperature of a
candidate pixel in channel 3 and the brightness
temperature of the background in channel 3. Thus,
unlike the NASA/GSFC approach, the new algorithm
also calculates *he mean channel 3 brightness
temperature and ~tandard deviation of the
background in order to co.s nare it with the channel 3
brightness temperature of given PF pixel.
Nevertheless, the selection of an ap_ropriate limiting
value should be studied more. We decided to fix it at
a level of 3 K. This value was chosen, based on our
investigations on fire characteristics in the Ivory
Coast and Central African Republic (Stuttard et al
1995). It was noticed that some pixels, in the range
between 2 K and 4 K difference with the background,
were confirmed fires and some were on the border
line of confirmation (all PFs with a difference greater
than 4 K were confirmed fires). We decided as a first
approximation to retain as fires all PFs with a
difference of 3 K or greater than the background.
However, values included between 2 K and 4 K
represent only a very small part of the total amount of
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real fires detected. More statistical validation and
field information is required in order to refine the
choice of this threshold value.

3 Results and Discussion

The initial results (Stuttard et al 1995) indicate that
the contextual algorithm is an excellent fire detection
algorithm for global application. Its detection of fires
is comparable to conventional —multi-channel
threshold algorithms. Unlike the latter, however, it
does not require to change continually threshold
values, and it effectively rejects non-fire pixels in a
hot environment.

In order to assess the quality of the global vegetation
fire algorithm in detecting fires on a global scale, we
performed a validation test. The validation procedure
was performed comparing the outputs from the
contextual algorithm with independent data sets
containing the location of fire occurrences observed
from the ground Due to the incompleteness of such
existing data sets, a complementary validation
procedure based on expert visual interpretation of
AVHRR data was developed (Stuttard et al. 1995).
The visual interpretation was performed by extracting
fire information from nine test sites (Argentina,
Australia, Brazil, Central African Republic, Chile,
Ivory Coast, Namibia, Nicaragua, Zaire). These test
sites of 512x512 pixels were extracted from the EROS
Data Centre global data set. The regions were
selected in order to be as representative as possible of
different ecosystems, different geo-locations on the
globe, and areas with fire detection problems (e.g.
desert, sun glint, clouds, warm savannahs).

The extraction of fire information from these test sites
was done visually by staff with substantial experience
in visual detection of fires in AVHRR images. Fires
were identified by comparing hot pixels in channel 3
to their background, noting smoke plumes in visible
channels, using the inferential skill of the interpreters
and tracking day-to-day changes (day-to-day changes
are based on the principle that in certain regions, such
as savannahs, fire rarely lasts more than one day and
often moves quickly). On a pixel by pixel basis,
experts classified each pixel as:

e Definite Fire. A pixel which is believed to be an
active fire.

e Possible Fire. A pixel which looks like a fire, but
which raises doubts in interpretation, due to its
neighbourhood (e.g. sun glint, low contrast

between possible fire and background, pixel
adjacent to definite active fire).

e Non-Fire. A pixel which is believed not to be a
fire.

The overall result of the comparison between fires
detected with the new contextual algorithm and fires
detected with visual interpretation is presented in the
following table.

Context  algorith
m
Visual Fire Non-Fire Total
Data
Definite Fire 3265 350 3615
Non-Fire 598 2225607 | 2226205
Total 3863 2225957 | 2229820

Definite fires and non-fires:

e Of the number of pixels detected by visual
interpretation as fire, 90% were detected by the
algorithm as fire.

e Of the number of pixels detected by visual
interpretation as non-fire, >99% were classified
by the algorithm as non-fire.

e Of the number of pixels detected by the algorithm
as fire, 85% were definite fires.

Possible fires:

e Of the total number of observed pixels, <1% were
classified as possible fires (not included in the
above computation).

e Of the total number of pixels detected as fire by
the algorithm, 15% are possible fires.

The results obtained indicate that the overall
performance of this technique is excellent.
Nevertheless, there are still commission errors, where
the contextual algorithm detects fires falsely. We
believe that most of these errors are due to:

e Clouds or cloud edges which escaped the various
tests. Techniques to mask clouds should be
improved.

e Cool background that is not homogeneously
distributed around a hot area (detected as PF).
Edges of either hot areas or clouds have often
been selected as fires because the background
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provides enough influence in the statistic to accept
the pixel as fire. We are currently testing the
application of background distribution criterion
around the PF.

e Background of immediate neighbourhood that is
much cooler than the general background of the
area. This may be due to sensor behaviour. This
phenomenon leads to erroneous identifications,
which could be eliminated by starting with a
context-window greater than 3x3.

The validation procedure was however subject to
limitations. The validation data set was extracted from
the image data only and was therefore not truly
independent.  Moreover, visual interpretation of
AVHRR data may be very difficult and implies
possible human errors. In these conditions, the visual
validation and the resulting extracted data must be
considered at this stage as simply an indication of real
fires in the field.

CONCLUSION

The use of the proposed fire detection contextual
algorithm appears to be successful and very
promising. Its fundamental principles, based on a
comparison with the surrounding background, allow it
to be used in diverse contexts such as dry, hot
savannahs, deserts, and tropical forests without
adjusting threshold values regionally and seasonally.
The objectivity of the test, its automatic procedure and
self-adaptive performance have demonstrated its
usefulness in detecting fires with a high degree of
accuracy. Even though it is not the optimum solution
yet, its implementation is already operational for fire
detection from NOAA-AVHRR-LAC data. Research
to further develop the algorithm is ongoing and recent
work in Indonesia and Madagascar has already
provided indications of substantial improvement in
fire detection activities.
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