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ABSTRACT

The aim of this work is to monitor the recovery process after fire by means of satellite imagery. The objective is
to assess the ability of different species populations to regain initial NDVI values when they are subject to
disturbance, to analyze the speed of recovery in the following years after fire, and finally, to estimate rates of
regrowth. The test area is located in the north of the province of Alicante, in the Mediterranean coast of Spain.
This area is especially prone to forest fires, showing a remarkable land use history and human pressure. The
test areas belong to different microclimatic zones and show diverse vegetation communities, so we attempt to
discover different behaviours according to biogeographical conditions. To accomplish these objectives, we
obtained nine Landsat 5 TM images from 1984 to 1994 on which geometric and radiometric corrections were
carried out. When the comparison between images was possible, we generated the NDVI for each date. The
NDVI and the differences between images were the most suitable parameters to map the burnt areas. In
addition, to assess the recovery processes a non-linear regression analysis between multitemporal NDVI values
and the time elapsed from the fire was used. The mathematical adjustment between NDVI and TIME showed
an asymptotic behaviour when the recovery process was complete. In addition, this adjustment provided

parameters with an interesting ecological interpretation more related to the regeneration process after fires.

1. INTRODUCTION

Postfire studies have been carried out by several
authors with diverse objectives (recovery processes,
mapping damage intensities or burned lands), being
the use of vegetation indices (VIs) the common factor
in their methodologies (Jakubauskas et al., 1990;
Navarro, 1991; Viedma and Chuvieco, 1993). A close
relationship has been demonstrated between VIs and
the physiologic parameters of vegetation (LAI,
biomass, photosynthetic activity, productivity, etc..)
(Huete, 1987, Sellers, 1987; Asrar, 1992; Baret and
Guyot, 1991). Although LAI is the principal
morphological parameter of the vegetation canopy
linking to satellite-derived vegetation indices (Tucker
and Sellers, 1986; Baret et al., 1989), its estimation
and measurement is very difficult. For that reason the
VIs have become a valuable tool to monitor and
assess vegetation status.

The spectral behaviour of vegetation in the visible
and near infrared region in contrast to soils justifies
the use of NDVI in vegetation cover discrimination.
In addition, NDVI partly normalizes the influence of
external factors in the canopy reflectance, i.e. the
errors associated with illumination fluctuations or
atmospheric scattering (Holben et al, 1986).

On the other hand, in several regeneration studies
regression and correlation analyses have been used to
describe the relationship between TM band values
and age of regenerated stands (Fiorella and Ripple,
1993). Other authors have studied the regeneration
process creating transition matrix between the prefire
image classification and the postfire one (Gregory et
al., 1981; Kachi et al., 1986; Hall et al., 1987). These
comparisons have been widely used although the
results had problems due to the effect of classification
errors on transition rate estimates. However, from
transition matrices it is possible to estimate the
recurrence time (the average number of years for a
landscape element to return to a given state once it
has left the state) (Hall ez al., 1991).

In this paper, we used the Normalized Difference
Vegetation Index (NDVI) in reflectance values:

T™M4 - TM3
NDVI =
TM4 + TM3

to analyze the regeneration process by an adaptation
of a reflectance model (Baret, 1988) that allows an
empirical relationship to be established between
canopy reflectance (measured as NDVI) and LAI
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values. This model describes the growing process of
canopies without any disturbance phenomena, being
the NDVI values defined as a function of LAI and
showing a direct relation between LAI and time.
According to the relationships between canopy
reflectance, biological parameters (LAI-ground cover)
and time, we adapted the original model to describe
the regenerative processes after fires in a forested area
of the Mediterranean coast of Spain, historically
disturbed by fire.

2. METHODOLOGY

2.1. The Study Area
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The study area is located in the north of the province
of Alicante, on the Mediterranean coast of Spain. The
area is bounded by the UTM coordinates X 730400-
760400, Y 4274000-4304000 with a surface of 900
Km®. This area is especially prone to forest fires,
showing a remarkable land use history and human
pressure. Geomorphologically this zone presents
alternate mountains and valleys with NE-SW
direction whose lithology are limestones, marls and
sandstone from the Mesozoic Era and constitutes the
most eastern part of the "Beticas" chain. The
elevation ranges between sea level and 1530 meters.
The major parts of the forested areas are located
between 400-900m, while the agricultural zones are
distributed between 0-300m covering the areas with
the best topographic conditions (Figure 1).
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Figure I - Altitudinal distribution of the forested and agricultural zones in the study area

The natural vegetation of this area is the typical
Mediterranean forest growing in a limestone
substratum. This forest is a heterogeneous formation
composed mainly of holm-oaks  (Quercus
rotundifolia) considered to be the ‘climax
vegetation"”, which has given way at present to
coniferous species (Pinus halepensis, Pinus pinaster)
and to secondary formations of shrublands, originated
from the degradation of the climax vegetation
(Quercus coccifera, Ulex parviflorus, Rosmarinus
officinalis, Thymus vulgaris, Stipa tenacissima,). In
this study we have differentiated three types of
vegetation communities as identifiable categories in
the digital classification of the images. Their
physiognomy and species composition are described
below:

1) Sparse Shrubs: They form open communities with a
low density and high surface of bare soil. The thymes
and rock roses are the more common species. They
are located on the steeper slopes where erosion
processes are more accentuated, but it is also usual to
find them in topographically and edaphically
favourable areas due to human pressure and to the

great recurrence of fires. So, physiography is not the
only determinant factor in their location.

(ii) Dense Shrubs: They are dense and close
communities with a medium-high height (0.5-Im).
The species composition is similar to the sparse
shrubs although the level of closure is greater.

thymes, rosemaries, moors and furzes are the
commonest species.
(iii) Forested Shrubs: These are dense shrub

communities with a sparse tree canopy. These trees
respond to reforestation practices and natural
regeneration from fires. The commonest species is
Pinus halepensis.

In general, the spatial distribution of the natural
vegetation cover is very fragmented and the
distribution of forest areas and their density levels
respond more to human activities than the natural
physiography and topographic conditions.

Climatologically, the topographic complexity of this
area leads to diverse microclimatic conditions that
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produce different environmental states. The average
annual precipitation varies from 350 mm in the South
to 900 mm in the North. This steep rainfall gradient
allows a classification into three microclimatic areas:
less than 450 mm, between 600-700 mm and more
than 800 mm. According to this classification, we
have differentiated three regions denoted by the
following abbreviations, and later we will use them to
describe the training areas:

VG ("Vall de La Gallinera"): it is the wettest area
(more than 800 mm). Located at the North of the
study area.
VE ("Vall de Ebo"): follows the previous area to the
South direction. It is very wet too (between 600-
700 mm.).

EG ("Embalse de Guadalest"): it is the driest area
(less than 450 mrn). It is situated in the south-east
zone of the study region.

2.2. Imagery Acquisition

In order to perform this multitemporal study, several
Landsat TM images from 1984 to 1994 have been
used. The date selection was performed taking into
account the statistical information available (forest
fire data base), the seasonal incidence of fire
(summer) and the absence of clouds. The images were
the following:

March 28th 1992
June 19th 1993
May 21st 1994

April 7th 1984 May 7th 1989
April 9th 1986 June 7th 1990
June 3rd 1987  June 14th 1991
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Figure 2 - Flow diagram of the methodology followed in this study.

2.3. Images Preprocessing

The image preprocessing consisted of geometric and
radiometric (topographic  and atmospheric)
corrections (Figure 2). These treatments made
possible the comparisons between images. In the first

place, all scenes were converted to apparent
reflectances using sensor calibration coefficients.

Later, an empirical atmospheric normalization of the
multi-annual images was employed to avoid the
effects of the different atmospheric conditions of the
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images and problems related to the absolute
calibration of the sensors due to the degradation
process. As we did not know the atmospheric
conditions during image acquisition, the satellite
reflectances from invariant ground targets (which are
assumed not to change in time) were used to
norrnalize multitemporal datasets with respect to one
reference image, preferably that one with the lowest
contribution of atmospheric reflectance (Lopez and
Caselles, 1987; Hill and Sturm, 1991). The reference
image was May 7th 1989 and a selection of stable
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radiometric areas (sand and water) were chosen from
the TM scenes (Figure 3b). These invariant picture
elements were compared to those from the reference
image by computing the respective linear band-to-
band regression (Figure 3a). In this way, any
differences in the apparent reflectances of such target
surfaces was assumed to be due to differences in path
radiance, atmospheric attenuation and sensor
degradation.
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Figure 3a - Linear band-to-band regression between reference image (1989) and another TM scene to accomplish an
empirical atmospheric normalization of the multiannual images used.
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Figure 3b - Reflectance values of stable radiometric areas (sand and water) before and after the multiannual atmospheric

normalization.

The radiometric correction of topogOraphically
induced effects on scene radiance was carried out by
means the Minnaert method (Minnaert, 1941). This is
a modified slope-aspect semi-empirical method based
on the common cosine correction. According to this
method the amount of the radiance in each point (LLH)
is proportional to the cosine of the incidence angle i,
where i is defined as the sun's incidence angle in
relation to the normal on a pixel, the sun's zenith

angle sz, the radiance observed over sloped terrain
(Lt) and the Minnaert constant k. The parameter k is
considered to be a measure of the extent to which a
surface is Lambertian and can be calculated
empirically by linearizing the equation 1
logarithmically and estimating the slope of a linear
regression (Teillet ez al., 1982; Meyer et al., 1993).

(:os(sz)}k (D

cos(i)

Ly= LT[
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When the images were radiometrically comparable, a
multitemporal classification was carried out. After
removing crops and other land uses (urban areas,
water bodies, etc.) using a mask, the natural
vegetation was classified into sparse, dense and
forested shrubs, coniferous forests and bare soils.
With this mask, the forest fires were drawn by means
differences among prefire and postfire NDVI images.
Later, we extracted the NDVI multitemporal values
for the areas burned in 1984-5 and not burned later
during the time analyzed because these zones showed
the longest postfire-time. And finally, these wildfires
were classified to observe if there were some
variations in the recovery process for different
vegetation communities.

2.4. Monitoring Recovery Processes

As is known, LAI is a basic morphological parameter
of vegetation canopy linked to satellite-derived
vegetation indices (Tucker and Sellers, 1986). This
relationship between NDVI and LLAI has been widely
studied (Price, 1992; Bouman, 1992; Asrar er al;
1992; Peterson et al., 1987).

Experimental results have confirmed that NDVI
increases exponentially with LAI and it seems to
reach a plateau at high LAI levels when the
vegetation cover is maximum (Nemani er al., 1993;
Bausch, 1993; Garcia-Haro et al., 1995). In addition,
for low vegetation levels, NDVI variations are
linearly dependent on LAI values. Otherwise, at
intermediate canopies, NDVI presents soil-colour
induced variations, due to the scattering and
transmission of NIR flux through the canopy (Huete
et al. 1985). The asymptotic value of NDVI is
reached at certain LAI values, depending on the
optical and architectural characteristics of the canopy
stand (Peterson et al., 1987). This saturating value is
independent of soil optical properties, because it
occurs when soil is completely hidden by leaves.

We applied the following empirical expression to
model the exponential relationship observed between
NDVI and LAI, which has been reported by several
authors (Baret er al., 1989; Wiegand et al., 1992).

NDVI = A -B #exp ((C*LAI)  (2)

In that expression, A is the NDVIee | i.e., the limiting
value of the NDVI at large LLAI values. (A-B ) is the
intercept of the curve with the NDVI axis, i.e., the
NDV], for the soil background; B is, therefore, well
related with the soil optical properties. A and B
should be expressed in units of NDVI. Finally, C is a
coefficient related to the extinction of solar radiation

through the canopy and should be expressed in units
of (LAD).

In this work we aimed to quantitatively analyze the
variations of vegetation during the years following
the fire, in order to address the factors affecting
regenerative processes. In this way, we can assume a
direct relationship between the time elapsed from a
forest fire and LAI (consequence of vegetation growth
in the burned areas). The equation (2) was now
applied replacing vegetation contribution expressed
by the LAI values for time lapsed since the fire
occurred:

NDVI = A -B * exp (-D*TIME) (3)

where the parameters A and B have a similar
meaning as in equation 2 and the parameter D is
expressed in units of (time) . This representation
allows us to determine the evolution of the NDVI
through some variables (such as A, B, D and some
others derived from these), which provide an
ecological interpretation well related to the
regeneration process after fires.

In this sense, A (with NDVI values) represents the
"Potential Vegetation" that the forest areas can reach
if there is not any biophysical constraint or
disturbance. This constant can establish differences
between areas and communities due to the diverse
regenerative capabilities offered in the long run.
Hence, the constant A lets us define the "potential
recovery capability” of the communities. If this
magnitude shows high values, it represents a great
recovery ability. However, if this one shows low
values, the recovery capability will be low. This
constant depends on the degree of degradation of the
prefire vegetation community.

B (with NDVI values) is the variation of the NDVI
values from the fire (A-B) until a great lapse of time
(A) enough to reach a complete recovery. Hence, this
constant is in direct relation with the constant A, and
describes the "magnitude of change" produced by the
fire over the potential vegetation community. By
comparing NDVI values before and immediately after
the fire, we could assess the magnitude of the change
on the real state of vegetation and the ability of the
ecosystem to reach similar values as before the fire.

D (with T dimension) is the constant that indicates
the speed at which the vegetation communities reach
stability. Hence, the constant D represents the
"stability speed". This parameter indicates the
temporal scale of the regeneration process. In this
sense, if the D value is high the areas can reach the
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"stability state" in a short time period, but if value is
low, the areas remain in a continuous "growth
process" due to the physiologic conditions of the
communities (species populations of short life cycle).

With the slopes of the curves, we tried to express the
"speed of recovery" of the burned communities.
However, this information only makes sense if it is
analysed simultaneously with the other constants.
Hence, high slopes will mean a great recovery speed
if accompanied by high A values, but it only can
express the magnitude of the change if is
accompanied by high B values and low A values. On
the other hand, when the slopes and A are low the
recovery speed is slow and represents the low
magnitude of change caused by the fire. Later, you
can see that the slope was studied during the first four
years after fire because the major changes happen
during that period.

3. RESULTS

In the vegetation communities analyzed, we observed
two well differentiated recovery pathways. On the one
hand, the recovery behaviour is near linear (Figures 4
and 5), showing low D values and high A values. In
this situation, the saturation level of the NDVI (A
constant) during the time series analysed was not
reached. And hence, the D constant (that is in direct
relation with A) shows an overestimated low value. In
this sense, we agree with the results of Wiegand er al
(1992) that the iterative procedure either fails to
converge on values of A and D or arrives at large
values of A that are offset by unrealistic small values
of D, both of which are uncertain. The ecological
interpretation of this near-linear recovery behaviour
can be given by the physiologic characteristics of the
vegetation communities (species populations having a
short life cycle), which are kept in a "continuous
growth process" for a long time without reaching
stability in their recovery process.

A second group of vegetation communities can be
characterized by high D values and medium-low A
values (Figures 6 and 7). The high D value indicates
that the areas can reach the "stability state" in a short
time period, but this does not mean that the potential
recovery capability is good, given that the A value is
low (PF85 (sparse and dense shrubs)). In addition, the
low B values show the variations caused by the fire
are limited and the low recovery ability responds to
the prefire conditions and the physiographic and
physiologic constraints. However, in the dense shrub
communities (Figure 7) when the high D values are
joined at high B values, i.e. VE84 (dense shrubs), the
great recovery process is related to the magnitude of
the change caused by the fire.

In the "tree shrubs" the high values for all constants
analyzed (Figure 8) are noticeable and hence indicate
adequate conditions to reach a full recovery process.
However, we can observe how areas with  greater
damage intensity than others can recover faster and
reach a stable condition. In Figure 8 the training
areas have a similar NDVI value one year after the
fire, although the magnitude of the change was
greater in the VES (tree shrubs) than in PF85 (the B
value is greater). The major recovery capability
showed by VESS is due to its better prefire conditions.

4. CONCLUSIONS

In the first place, it is necessary to emphasize the
importance of the image normalization (topographic
and atmospheric) to carry out any multitemporal
study. In addition, when the aim of the study is to
assess the vegetation behaviour, it is essential to take
into account the phenological seasonal variations. In
this work, some environmental parameters affecting
the vegetation behaviour have been analyzed: the
climatological conditions (rainfall), the degradation
level of the vegetation community and the stoniness
of the soils. However, a more precise treatment of
these variables is necessary to accomplish the
objectives.

The mathematical adjustment provides parameters
with an important ecological meaning for analyzing
the regrowth processes after fires. In this sense, the
constant A let us define the "potential recovery
capability" of the communities. The constant B let us
quantify the "magnitude of change" caused by the fire
on the potential vegetation (A); the constant D is well
related to the "stability speed" and indicates the
temporal scale of the regeneration process, and finally
the slopes of the curves express the "speed of
recovery" of the burned communities. However, these
constants only acquire sense when they are analysed
simultaneously.

The model is appropriate for data with an exponential
behaviour in their regenerative process. However, for
data which are essentially linear, no asymptotically
limiting value of A exists. In addition, this model is
sensitive to some factors which must be controlled.
For instance, different canopy configurations and soil
reflectance, which play an important role with low
ground cover. In this sense, and as a future work, a
deep analysis of the several factors that characterize
the complex variablity of the vegetation (phenological
variations, clump distribution and variations in soil
reflectance) will be necessary to correct the response
obtained from the NDVT values.
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Figure 4 - Near-linear recovery pathway on sparse shrubs communities. The bars represent +1 standard deviation of the
original mean NDVI values at each date.
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Figure 5 - Near-linear recovery pathway on dense shrubs communities.
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Figure 7 - Exponential recovery pathway on dense shrubs communities
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Figure 8 - Exponential recovery pathway on forested shrubs communities.
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