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ABSTRACT 
Yield forecasts are of high interest to the malting and brewing industry in order to allow the most 
convenient organisation of the respective purchasing policy of raw materials. Within this investiga-
tion, malting barley yield forecasts (Hordeum vulgare L.), in Germany mostly grown as spring bar-
ley, are performed for typical growing regions in South-Western Germany. Multitemporal remote 
sensing data on the one hand and ancillary data such as meteorological, agrostatistical, topog-
raphical and pedological data on the other hand are used as input data for two versions of predic-
tion models, which were based on an empirical-statistical modelling approach. 
Since spring barley production is dependent on acreage and on the yield per area, classification is 
needed, which was performed by a supervised multitemporal classification algorithm, utilizing opti-
cal remote sensing data (LANDSAT TM/ETM+). The classification algorithm considers spectral 
data, topographical data (Digital Elevation Model) and expert knowledge input. The latter is impor-
tant with regard to the particular phenological development of the observed crop, an expertise 
which was used to distinguish it from similar crops.  
The basic version of the yield estimation model was conducted by means of linear correlation of 
remote sensing data (NOAA-AVHRR NDVI Maximum Value Composites), CORINE land cover 
data and agrostatistical data. In an extended version meteorological data (temperature, evapo-
transpiration) and soil data were incorporated. Both basic and extended prediction systems led to 
feasible results depending on the selection of the time span for NDVI accumulation. For NDVI ac-
cumulation across the grain-filling period, the mean deviation of the reported yield from the simu-
lated one was 7.0% and 6.4% for the basic and extended yield estimation model, respectively. 
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INTRODUCTION 
The yearly variation of acreage and quality of agricultural crops determines the formation of prices. 
Food processing industry is therefore highly interested in yield forecasts in order to obtain an early 
knowledge about expected yields and quality of raw materials in order to optimize their purchasing 
policy.  
Malting barley in Germany is mostly grown as spring barley (Hordeum vulgare L.). It has, however, 
to be considered that a percentage of spring barley, mainly lower quality spring barley, is also util-
ized as forage for livestock farming.  
Since yield represents the major objective in the marketing of malting barley, the present study fo-
cused on yield quantity [tons ha-1] and regional production, which is determined by the combination 
of both acreage and tons ha-1. For acreage determination optical satellite imagery (LANDSAT TM 
and ETM+) was used. Pixel-based as well as object-oriented classification was carried out, a com-
parison of both was conducted later on. It is, however, still a challenge to classify individual crops 
and not crop groups like cereals as a whole, in particular for the given conditions (spatial resolu-
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tion, land use structure). Similar works, which have been conducted in the past, achieved classifi-
cation accuracies of 40 - 70% (1,2). 
As described in the literature, a variety of yield prediction models are using remote sensing data 
(3). The used model for yield per area was empiric statistical, based on linear correlation of agro-
statistical data and NDVI maximum value composites (MVC) between 1995 – 2002. Additionally, 
ancillary data (CORINE land cover, meteorological, phenological, pedological, topographical data) 
was incorporated. Linear correlation for yield estimation is propagated by several authors (4,5,6). 
NDVI, an indirect measure for vegetation vigour, is used to determine expected yields; the rela-
tionship between NDVI and yield performance is derived from historical agrostatistical and NDVI 
data (1995 – 2002). As a prerequisite land cover should be mainly dominated by the investigated 
crop or crop family. For investigations on yield quantity (yield ha-1) optical low resolution imagery 
from NOAA-AVHRR (1.1 km) was utilized. 

METHODS 
Image analysis and classification 
A pixel-based and an object-oriented strategy have been applied for the supervised multitemporal 
classification in order to enable comparisons between both methodologies.  
Supervised pixel-based classification was done by ERDAS Imagine. Water bodies, forested areas 
and impervious areas were masked out in order to reduce noise in the image. The remaining agri-
cultural areas of the available images were classified as agricultural crops by a Maximum-
Likelihood algorithm (7). A DEM and knowledge-based rules were incorporated. The latter ones 
were interactively defined by NDVI thresholds and accounted for the expulsion of similar crops.  
Object-oriented supervised classification was carried out by eCognition software (8) with previous 
segmentation and the implemented Standard Nearest Neighbor algorithm, which is in fact, to 
some extent, also a fuzzy classification. Like in the pixel-based classification, knowledge-based 
rules were incorporated, based on thresholds of an interactively gathered fuzzy rule set. 
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Figure 1: Schematic model for the basic (white background) and extended (grey background) 
NDVI linear correlation model for yield (kg ha-1). 
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Yield prediction models 
As shown in Figure 1, two different models, a basic and an extended model have been applied for 
yield prediction in terms of yield per area. However, both are based on a linear correlation model 
with NDVI MVC and agrostatistical data as main inputs. Both models utilize CORINE land cover 
data (9). Administrative units are defined by vector layers, which are used for zonal averaging over 
districts on the so-called European NUTS-3 level (10). Out of historical meteorological and 
phenological data Growing Degree Days (GDD) were generated and utilized for determination of 
starting and ending days of phenological stages for NDVI accumulation (Figure 2). An alternative 
modelling approach utilized calendar days for determination of NDVI accumulation periods. 
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Figure 2: NDVI means and time spans for NDVI integration. Integration periods were based on 
calendar units (CAL1 – CAL4) or on Growing Degree Days (GDD1 – GDD4) and thus based on 
phenology. GDD time spans are just roughly depicted since defined as local temperature sums. 
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For the extended yield prediction model two stress factors have been implemented, focusing on 
sensitive stages of plant development. Temperature stress was regarded in 3 stages (emergence, 
stem elongation, heading), water stress in two stages (stem elongation and heading). Due to high 
temperatures in the stages of stem elongation and heading losses in grain yield may occur. This is 
described by Wheeler et al. (11) for wheat and for barley, which reacts in a similar way, by Eagles 
et al. (12) and Chmielewski (13). Wardlaw et al. (14) estimate yield losses of 3 - 4 % for each de-
gree exceeding 15°C during grain filling. On the other hand, this implies that low temperatures dur-
ing yield formation may foster higher yields. At early phenological stages, like during emergence, 
high temperatures are required in order to allow a rapid and strong growth for young plants. Inves-
tigations by multiple linear regression analysis revealed yield losses at low temperatures (15) in 
early stages. Revaluation and devaluation of modelled yields had a dimension of 3.5% °C-1 during 
heading and 2% °C-1 during stem elongation and emergence. The calculation of temperature de-
viations was performed by a comparison of the long-term average (median 1990 - 2002) tempera-
ture and the actual temperature in a given phenological period and district. 
Water stress was considered during stem elongation and heading. Especially the latter stage is 
highly sensitive to drought (16). A quantification of yield losses is estimable by the Crop Water 
Stress Index – CWSI (17), a relationship between ETa, the actual evapotranspiration and ETp the 
potential evapotranspiration.  
For each stress factor an additional variable was introduced to control the magnitude of correction, 
which could theoretically range between 0 and 100 %. This variable allowed the model to be opti-
mized using the Simplex method (18). Also interactions between the stress factors could be indi-
rectly accounted for by these variables. 

RESULTS 
Land use classification 
Since field plot size in South-West Germany is rather small, classification results for both pixel- 
and object-oriented classification algorithms are given separately for subsets of different field plot 
extents (table 1 and table 2). Obviously, the larger the field plots, the better the classification. 
Pixel-based and object-oriented classification results were better in the region of interest of BW. 
Generally, object-oriented classification led to better results in the smaller field plots in the regions 
of BW and RLP compared to the pixel-based approach, whereas results for larger field plot sizes 
did not differ much. 

Table 1: Results of pixel-based classification of spring barley for both regions of interest (BW and 
RLP). Results are expressed as percentages of classified area. 

 Rhineland-Palatinate (RLP) Baden-Württemberg (BW) 
Statistics applied on: n Classification accuracy n Classification accuracy 
All field plots 92 46 % 29 58 % 
Field plots > 1,0 ha 60 49 % 20 61 % 
Field plots > 2,0ha 33 57 % 11 69 % 
Field plots > 2,5 ha 22 61 % 7 72 % 

Table 2: Results of object-oriented classification of spring barley for both regions of interest (BW 
and RLP). Results are expressed as percentages of classified area. 

 Rhineland-Palatinate (RLP) Baden-Württemberg (BW) 
Statistics applied on: n Classification accuracy n Classification accuracy 
All field plots 92 48 % 29 65 % 
Field plots > 1,0 ha 60 51 % 20 69 % 
Field plots > 2,0 ha 33 57 % 11 71 % 
Field plots > 2,5 ha 22 60 % 7 73 % 
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Yield predictions 
Results of the yield prediction by the basic linear correlation model with accumulated NDVIs by 
calendar units and GDDs are shown in Figure 3. Generally, GDD-based accumulation led to better 
results. Both strategies show relatively low mean deviations in respect to the reported yields (on an 
average < 11.5%). However, correlation coefficients of the worse results indicated low correlations 
and hence low stability of prognosis. The accumulation period of July seems to be inappropriate, 
because it is too close to maturity, whereas earlier time spans represent higher correlations and 
hence lower deviations. GDD-based accumulation gave best results for the period from ear emer-
gence to yellow ripeness (grain filling period). At the end of this period yield predictions were pos-
sible with an average deviation of 7.0%. Similar results are possible by accumulating NDVIs in the 
assumed period of maximum photosynthetic activity, which represents a slightly earlier period, 
even though correlation was low in one observed district. Due to its low correlation the early period 
from stem elongation to ear emergence (GDD1) is not recommended for prognosis, whereas an 
extension to yellow ripeness (GDD4) stabilizes the relation. 
The last column of prediction deviations of Figure 3 stands for the extended yield prediction re-
sults. The deviations are slightly improved regarding the basic yield prediction model (GDD2). The 
distribution of the deviations reveals the highest compactness with an average deviation of 6.4%.  
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Figure 3: Prediction deviations for the simple (calendar and GDD based) and extended yield fore-
cast model for different NDVI integration periods. 
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CONCLUSIONS 

The results of the classification could clearly be improved when the field plot size was incre-
mented. However, an area of 2 ha is desirable when 30 m resolution imagery is used in order to 
reach (producer’s) classification accuracies of 60 % or more. The better results were generally 
achieved in the region of BW, which might be due to larger field plots and less variety in the crop-
ping pattern. The object-oriented classification method led to an improved classification of small 
field plots in both regions BW and RLP. Although the classification accuracies were rather low, 
qualitative comparisons with regard to previous years allow the user to extract valuable informa-
tion. It has to be noted that spring barley was classified and not, as in many land use classifica-
tions, a whole crop family (e. g. cereals) or barley comprising winter and spring barley. The high 
confusion associated with that and the fact that relatively coarse remote sensing data (in respect 
to the field plot size) was used led to the mentioned accuracy results. 
Regarding yield predictions, the comparison between calendar-based and GDD-based accumula-
tion periods for yield prediction is not possible in a consistent way, since periods of accumulation 
were not the same in both methodologies. Time spans GDD3 and CAL3 bear the highest resem-
blance to each other, the GDD-based accumulation performed clearly better in this case. This is 
plausible, since GDDs are indirectly taking into account also the phenology of crops. 
Critical analysis of the resulting deviation of modelled yield from reported yield must consider also 
the robustness of relationships in terms of the correlation coefficient or the maximum deviation 
(herein expressed as 90 % percentile). This is essential, since also very weak relationships may 
lead to apparently reliable results. This requirement was best fulfilled by accumulation of NDVIs 
from ear emergence (EE) to yellow ripeness (YR), which comprises the heading stage and the 
grain filling period (see GDD2). Obviously, the earlier the accumulation period the worse the pre-
diction, since events of interest which affect NDVI, occurring after this date, are not included. 
However, for some customers an early yield forecast might be of great value even though preci-
sion is lower. Accumulation of NDVIs in the assumed maximum photosynthetic activity (GDD3) fo-
cuses on this issue and allows a prediction at the end of June, while prediction results are still fea-
sible. 
Both the basic and the extended yield forecast models are a combination of remote sensing data 
and ancillary data. Although the extended model uses more ancillary data, the gathered results 
were not improved in the same relation as data input flow increased. A reason for this might be the 
fact that the NDVIs, which represent a copy of vegetation vigour, already include this information. 
Therefore, the use of additional meteorological and pedological data sets is to a certain extent 
probably leading to a double correction. However, impacts of drought, heat or cold might be hardly 
detectable by NDVI when they occur in a late or very early stage of the growing period.  
The achieved results encourage an operational use of the forecast model, especially the basic 
yield prediction model, which may be categorized as a low cost model, due to the limited data re-
quirements. 
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